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EDITORIAL 

We are very pleased to present a special issue of the ACES Journal that showcases international 
research in computational electromagnetics. The papers published here have been especially selected from 
those presented at the Brazilian Conference on Electromagnetics. It was held May 1995 at Florianopolos, 
Santa Catarina, Brazil, at the "CBmag'95, Congresso Brasileiro de Eletromagnetismo" (Brazilian Confer- 
ence on Electromagnetics). 

A total of 26 papers appear in this special issue. Many of the authors of these papers reside in Brazil 
and are not well known in the northern hemisphere. Some of us in the United States, Europe, and Asia will 
be surprised by the high quality of the papers in this issue. They show that our neighbors to the south are 
truly an active part of the computational electromagnetics community. 

With the increase in the popularity of the world wide web and other communications media, 
important advances in numerical computations will occur in all comers of the globe. We hope that this 
special issue is a forerunner to help foster further international activity and cooperation in computational 
electromagnetics. 

Joao Pedro Bastos Adalbert Konrad John Brauer 



3B-Splines in the Integral Equation Solution 
for Scattering from Bodies of Revolution 

F.L. Teixeira1, J.R. Bergmann 
'EMBRATEL S.A., Satellite Transmission Department 

2CETUC - Center for Telecommunication Studies, Catholic University of Rio de Janeiro 

Abstract- The use of B-Spline functions is investigated in 
conjunction with the Method of Moments integral-equation 
solution to the problem of scattering from conducting 
bodies of revolution. Its computational performance in 
terms of relative accuracy and storage/CPU time 
requirements is evaluated against entire-domain and 
sampling-like basis functions. Particular attention is given 
to the description of currents near edges. Questions of time 
(space) and frequency (wavenumber) localization are also 
addressed. A simple scheme devised to enforce boundary 
conditions a priori is shown to be potentially capable to 
stabilize otherwise spurious solutions. 

I. INTRODUCTION 

The numerical treatment of open-boundary 
radiation or scattering problems in the frequency domain 
is usually done with the use of a linear integral equation 
(IE) formulation. The Method of Moments (MoM) is a 
general procedure to reduce an IE to a matrix equation 
[1] that is usually dense and computationally intensive to 
solve. In order to reduce the matrix dimensions, a crucial 
aspect of the MoM solution is the adequate choice of 
basis functions. Two major classes of basis functions 
commonly employed in the MoM can be identified: 
entire-domain functions [2-4] and local-domain 
(compact support) functions [4-6]. Entire-domain 
functions are more specialized, being used in specific 
problems to attain a fast convergence. Local-domain 
functions are geometrically flexible, being more 
practical to analyze complex geometries. 

The fast rate of convergence achieved with the 
use of entire-domain functions for certain problems of 
scattering from perfect electric conductors (PECs) [2,3] 
is related to the spectral characteristic (in the spatial- 
frequency domain of the wave-number £) of the 
induced electric currents. Of particular interest, because 
of its practical importance, is the class of smooth 
objects, i.e., with local radius of curvature greater than 
one wavelength. For these objects, a reasonable 
assumption is that the induced current has a bandlimited 
nature, i. e., can be well approximated by functions of 
confined wavenumber spectrum, I k I < k,,, (moreover 
in the context of far-field scattering). Heuristic 
arguments in favor of this hypothesis were well posed by 

Hermann [7]. Entire-domain functions as Fourier 
trigonometric functions usually have a low-frequency 
spectrum and thus, are natural candidates for an efficient 
expansion for the unknown currents. 

One attractive characteristic of the local-domain 
functions not shared by the entire-domain functions is 
local support. It permits a faster evaluation of integrals 
since only a small region of the scatterer needs to be 
integrated in the evaluation of each coefficient of the 
MoM linear system (impedance matrix). In addition, 
since the entire-domain functions are defined over the 
whole object, the CPU time for evaluating each 
coefficient is also dependent on the electric size of the 
object. As a consequence, it implies an even worse 
frequency-scaled dependency of the required CPU time 
to solve the problem. 

The interest to develop a scheme combining the 
attractive aspects of local and entire-domain functions 
can be traced from the above observations. It would 
correspond to the use of basis functions having band- 
limited spectrum and, simultaneously, local support. 
Ideally speaking, this objective is not strictly possible, 
since the Fourier transform of any function with a finite 
spatial support has necessarily an infinite support. The 
objective to be sought is then an approximation to this 
ideal. 

One scheme that proved successful in this 
direction was the use of the so-called quasi-localized 
bandlimited basis functions (sampling-like) [7,8]. In the 
examples considered there, the sampling rate associated 
with the MoM was reduced from the usual number of 10 
basis functions per wavelength to an average rate of 
between 2.5 and 3 bandlimited basis functions per 
wavelength. At the same time these functions allowed a 
very rapid computation of the integrals involved due to 
their limited overlap. The basic limitation of this 
approach is that it does not provide special treatment for 
currents near the edge of the scatterer (in the case of 
open scatterers), where a singular behavior is expected 
in the induced currents (leading to spatially localized 
high-frequency components). Failure to incorporate the 
correct edge behavior can result in erroneous currents 
and anomalous behavior of the solution near the edge 
[9]- 



Fig. 1- Geometry and coordinates of a body of revolution 

To alleviate these problems, this work explores 
the use of B-splines in the context of scattering from 
PEC bodies of revolution (BoR). Among the advantages 
presented by these functions and herein investigated are: 
(i) Near-optimal localization on the spatial and spatial- 

frequency (or wavenumber) domains (r,k) with 
asymptotic convergence to Gaussian functions, which 
have an optimal localization [10]; (ii) Ability to model 
the singular behavior near the edges through the use of 
multiple knots; (iii) Analytical simplicity that permits an 
exact analytic extraction of singularities arising in the 
kernel of the IE. Two specific examples are considered: 
the scattering from an infinitely thin, PEC circular disc, 
and the scattering from a finite, PEC hollow cylinder. 
For the second example it is also shown that a simple 
scheme devised to enforce a priori boundary conditions 
on the longitudinal current component can also solve the 
problem of instability in the azimuthal component when 
using the Electric Field Integral Equation (EFIE) [11]. 

This work is organized as follows. In section II 
the MoM solution of the electromagnetic scattering from 
conducting bodies of revolution is briefly reviewed. 
Section III contains a description of the basis functions 
used in this paper, with particular attention given to the 
interesting properties of B-splines. In section IV 
comparative results from the analysis of a circular disk 
and a finite hollow cylinder are presented. Finally, 
section V summarizes the most important conclusions. 

II. METHOD OF MOMENTS SOLUTION OF THE 
SCATTERING FROM BODIES OF REVOLUTION 

In this section the basic formulation of the 
MoM analysis of conducting BoRs is briefly reviewed. 
For a more detailed discussion the reader is referred to 
[5]. 

Fig. 1 depicts a general BoR. It is generated by 
a rotation of the curve C about the z-axis. For numerical 
purposes, C is approximated by a sequence of linear 
segments £;. Any point on the BoR surface can be 
described by two coordinates: §, the azimuth angle; and 
t, the arclength along C. Given an incident electric field 
f^the solution of the problem follows from the 
application of the pertinent boundary condition: 

nx(Einc + Es) = 0 (1) 

on the surface of the PEC scatterer, where £*(?) is the 

scattered field due to surface currents J(f') on the body 
and fi is the unit normal vector to the surface. The 
scattered field can be expressed in terms of the induced 

current through the radiation integral, with an eJl0! 

dependency assumed: 

Es(r) = -Jw\\ J(F')G(f,F')ds'- 
S 

Vsjj(V'sJ)G(r,r')ds' 
(0£ 

(2) 

here G(r,F') is the free space Green's function: 

0-jk\r-r'\ 
G(r,r') = 

4n\r - r'\ 
(3) 

Combining  (1)  and  (2)  the  Electric  Field  Integral 
Equation (EFIE) is obtained: 

EZ = L(J) = jcopjj J(?')G(?,?')ds' + 

coe VJJ(V;.J)G(F,?')^' 
(4) 

By decomposing the induced current and the 
incident tangential electric field in terms of its 
(orthogonal) components along the t and <|> directions, a 
set of two coupled integro-differential equations is 
obtained. In a dyadic form they are written as: 



(5) 

where LK are the integro-differential scalar operators (p 
and q stand for t and <|)). The MoM is then applied to 
solve the above equations. We start by expressing the 
unknown currents in terms of a suitable set of basis 
functions: 

j{t,<$>)= X 
m=~M 

Nl 

I 
Nip 

x&e,('.*)+X£ÄM) 
/=i 

bUt,^ = ff(t)e^ (6) 

The factor l/p(i) (radial distance to z-axis) in the t- 
component serves to cancel the p(t) associated with the 
element of surface dS' = pdQdt. The coefficients in (6) 
are the unknowns of the problem. The above integro- 
differential equations in a Hubert space are transformed 
(projected) into a matrix equation by inserting (6) in (5) 
and performing an inner product of the resultant 
equations with a set of test functions defined as complex 
conjugates of the basis functions (Galerkin method). The 
inner product is operationally defined to be the integral 
over S of the dot product of the basis and test functions. 
From the choice of harmonic dependence on <j>, there 
follows, in view of the rotational symmetry of there 
problem, a natural decoupling among different modes 
(index m). The resultant linear system matrix 
(impedance matrix) exhibits a block diagonal form and 
each mode can be treated separately, greatly reducing 
the computational effort to solve the overall problem. 
The impedance matrix equation for the m-th mode is 
expressed as: 

nrtt 'ytfy V ' m 
(7) 

(z„f)..=(K^r 

(Va
p,)=(Ein\b£ 

where ( , ) denotes inner product. The right-hand side 
vector in (7) is called the excitation vector. Explicit 
expressions for the impedance matrix and excitation 
vector (plane-wave excitation) elements and can be 

found in [5]. The solution of the above matrix equation 
(7) determines the induced electric current according to 
(6). 

The necessary number of modes in a specific 
problem can be determined from a convergence study. 
In case of plane-wave axial incidence only the m = ± 1 
modes are excited. 

III. B-SPLINES BASIS FUNCTIONS IN BOR ANALYSIS 

In this section the use of cubic B-splines as the 
basis functions in t is discussed. The domain of interest 
is limited to the interval [0,TF], where TF is the total 
arclenght of the generating curve. In order to construct 
cubic (order n=4, degree n-l=3) B-splines on this 
bounded interval the first step is to define a partition of 
K+l nodal points (knots): { t-, }i=IK , where 0 = t0 < 
.. .< tK - TF. In this work a uniform spaced partition will 
be used. Additional points are placed at the ends of the 
interval (multiple knots): 
tr+->  = tK+3 = TF. 

Let's define : 

t.3 = t_2 = t_, = 0 and tK+l  = 
lK+2 

y.tao^-or-r Q 
n-\ S>t 

S<t 
(8) 

Then the (normalized) B-spline of order n is given as the 

n-th divided difference of J„(s;t) in s on t,■, ..., ti+„ for 
fixed? [12], i. e., 

ßnj(0 = (',+» " t,)Y„(ti,...,ti+„;t), for all i (9) 

Fig.2 shows cubic B-splines (n = 4) on a unit interval 
with uniform spacing of five interior knots. Explicit 
expressions for (9) can be found in [13]. 

The above cubic B-splines present a series of 
potential advantages when used as a basis set. First, they 
have a local support which permits a fast evaluation of 
the integrals in (7). Second, they are smooth, having a 
spectrum concentrated at low frequencies, as the Fourier 
transform of the central B- spline of order n is given by 

/3„(0<-»sinc"(/) with sinc(/) = sinnf/rf . This is 
an important characteristic to fast convergence modeling 
of currents on smooth scatterers, as discussed in section 
I. B-splines are thus essentially limited both in the 
spatial (time) and the wavenumber (frequency) domains. 
Indeed, it can be shown [10] that B-splines converge to 
Gaussian functions pointwise as the order of the spline 



tends to infinite. Gaussian functions are optimal in terms 
of time/frequency localization. The approximation error 
for the cubic case is already less than 3% and the 
variance product is already within 2% of the limit 
specified by the uncertainty principle (Fig. 3). 

instabilities in the <j> current component in regions where 
J, dominates both equations in (5) [11], as will be 
shown in the next section. 

Fig. 2- B-splines basis functions in the unit interval with uniform 
spacing (K=8). 
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Fig. 3- Cubic B-spline with its corresponding Gabor approximation: 
ß4(x) = (1.5/7t)1/2exp(-1.5x2) 

Two other sets of basis functions are used in the 
examples of the next section. Entire-domain functions 
are defined by a series of sinusoids [3]: 

A third attractive characteristic is that such 
bases are also local in the sense of a small degree of 
overlap, i. e. , at every point, except very near the ends 
of the interval, only three B-splines are non-zero. 
Moreover, through the use of multiple knots they tend to 
be more localized and to have a higher spectral content 
near the ends of the interval. This is just what is needed 
for an improved description of currents near the edges, 
where a singular behavior for the currents is expected. 

Finally, the analytical simplicity of cubic B- 
splines is also of importance. In particular, its 
polynomial form permits a more accurate analytic 
extraction of singularities when evaluating the integrals 
that define the elements of the impedance matrix in (7) 
(see Appendix). 

The expression for the basis functions in (6) in 
terms of the B-splines is written as: 

// (0 = tß4i_4 (f)     i=l,...,K+n-2=Nt      (10a) 

^(0 = fru-4«     i=l,..,K+n-l=Ni     <10b) 

The factor t enforces a priori the condition J, (t=0) = 0 
in case of an edge at his point (p(t=0) * 0) and cancels 
the factor l/p(t) in case of p(t=0) = 0. It also avoids 

,int 
f/(t) = sm(—)     i=l,...,Nt (Ha) 

/T(0 = cos {i-\)m 
i=l,...,N.       (lib) 

Quasi-localized,  bandlimited  sampling-like  functions, 
are defined as [7], [8]: 

/•' (t) = /sinc[a(?tf - T, )]sinc(x? - T,) 

i=l,...,Nt (12a) 

ff (t) = sinc[a(M? - T; )]sinc(jfif - xt) 

(12b) 

with a = 0.3 , K = N, /7> and T; = (i - 1). The above 
functions are truncated at the first zero of the factor 
sinc[a(Kt - TJJ. It gives a negligible degradation on the 
bandlimited characteristic of these functions, due to the 
fast decay (1/df they present from the middle-point. 

In the examples studied (open bodies), the 
number of basis functions for t and § components are 



related through N^ = N, + 7. As a consequence of this 
choice, the Jt component is forced a priori to satisfy the 
boundary condition at the edge, vanishing at t = TF (for 
the case of open bodies) in expansions (10)-(12). 

IV. NUMERICAL RESULTS 

In this section two numerical examples are 
presented. The first one involves the determination of 
the induced current on a 4 X diameter infinitely thin 
circular disk. The axially incident electric field is a plane 
wave x-polarized (Fig. 4). In this case only the m = ± 7 
modes will be excited and the current will likewise be x- 
directed. 

Regarding the CPU time involved in the 
calculation of the impedance matrix, the sinusoidal 
(entire-domain) set is clearly the most demanding. The 
disk is discretized by 20 segments. In each segment, a 5- 
point Gaussian quadrature is use to integrate over t. 
Having a spatial support A equal to TF , a total of 
1002=(A/TF)2 integrand evaluations are required to 
calculate each term of an entire-domain impedance 
matrix element. 

Fig. 4- PEC circular disk illuminated by an axially incident plane- 
wave 

Figs. 5 (a) and (b) show the calculated current 

(normalized to I H'nc I) when using the three basis sets 

with N, = 10,7V0 = 77. The current is t-directed at <j> = 0° 
and <}>-directed at <|> = 90° . For the t-component (Fig. 
5(a)), the results obtained are virtually equivalent. The 
current shows an oscillation with a wavenumber k = k0 

around the value predicted by the physical optics 
approximation (jpo = 2« x H'"c )■ 

For the ^-component (Fig. 5(b)), the currents 
agree well except for the behavior near the edge. At this 
point the B-spline expansion produces a better modeling 
of the current singular behavior. This characteristic is 
present as the number of basis functions is increased. 
Fig. 6 illustrates the ((»-component when employing 

basis functions with N. = 19. The sinusoidal and the 
sampling-like sets give essentially the same results for 
the current. A small (apparently non-physical) 
oscillation in the ((»-component for the sinusoidal and 
sampling-like sets can also be observed. 

■ Sampling-like functions 

' . i_ 

0.0 0.5 1.0 1.5 2.0 

Fig. 5(a)- Induced t- component on a PEC disk. Ten functions used in 
t direction. 

• B-splines 

Sinusoids 

Sampling-like Functions 

0.0 0.5 1.0 

ta 
1.5 2.0 

Fig. 5(b)- Induced ()>- component on a PEC disk. Eleven basis 
functions used in $ direction. 
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- B-splines 

■ Sinusoids 

Sampling-like Funcions 

%.o 0.5 1.0 1.5 2.0 

Fig. 6- Induced ()>- component on a PEC disk. Nineteen basis functions 
used in <j> direction. 

In the case of sampling-like functions the 
spatial support (except for the functions near the edge 
which have a smaller support) equals to 2/aK = 6.67TF 

/N, . When Nt =10, a maximum of approximately 
100 x(6.67/10)2 integrand evaluations for each term in 
the impedance matrix elements are required, 44% of the 
entire-domain situation. When Nt = 18, this relative 
number is even smaller, = 13.5%. For the B-spline case, 
the maximum spatial support equals to TF 12 and TF /4, 
respectfully. It corresponds to a number of integrand 
evaluations of 25% (Nt = 10) and 6.25% (Nt = 18), 
relative to the entire-domain situation. Table I illustrates 
those observations, showing the (normalized) overall 
CPU time required to fill the impedance matrix. 

(normalized) CPU TIME 
BASIS FUNCTIONS Nt = 10 Nt = 18 

Sinusoids 0.32179 1.0000 
Sampling-like 0.10246 0.10728 

B-splines 0.05475 0.05560 
TABLEi 

The second numerical example comprises an 
axially incident plane-wave and a finite hollow cylinder 
with radius a and extending from z = 0 to L (Fig. 7). 
Twenty segments were used in the discretization of the 
generating curve. In this example, the strong coupling 
between the two component equations of EFIE (5) and 
the dominant behavior of the t-component may cause a 
spurious oscillatory behavior in the ([»-component as 

observed in [11]. This is exactly what happens when B- 
splines are used without the factor t in the expansion 
(10a), as Fig. 8(a) depicts. 

>   t 

Fig. 7- Finite PEC hollow cylinder illuminated by an axially incident 
plane wave. 

The non-enforcement a priori of the boundary 
condition Jt (t = 0) = 0 for this case also implies a 
spurious behavior of this component near t = 0 (Fig. 
8(b)). In contrast, when the expansion in (11) is used, the 
spurious result are eliminated, as Figs. 8 (a) and (b) 
illustrate. Also superposed in these Figures are the 
currents calculated using sinusoidal functions. In all 
cases, Nt = 10. The same observations previously done 
with respect to the required CPU time for the matrix fill 
also apply for this example. Again, the description of the 
current near the edge with the use of B-splines with 
multiple knots is more accurate. 
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■ B-splines with linear factor 

B-splines without linear factor 

-- Sinusoids 

vx 
Fig. 8(a)- <(>- component of the induced current on the hollow cylinder 

illuminated by an axially incident plane wave. 

11 



- B-spline with linear factor 

B-spline without linear factor 

Sinusoids 

t/x 

Fig. 8(b)-1- component of the induced current on the hollow cylinder 
illuminated by an axially incident plane wave. 

V. CONCLUSIONS 

An adequate choice for the basis functions is of 
great importance to the computational efficiency of the 
MoM solution. While a plethora of choices exists, two 
basic requirements should be satisfied by an efficient 
basis set: resemblance to the unknown current, thus 
leading to a convergent solution with few number of 
terms, and provision of a short computational time. 

In this work, different choices for basis 
functions are addressed in the context of BoR scattering. 
Concepts like time and frequency localization, as well as 
the description of the current singularity near the edges, 
are discussed. It is shown that functions with a limited 
spectrum can lead to an economic representation in case 
of smooth BoRs, although near the edge the singular 
behavior can be overlooked. In this respect, the use of B- 
splines with multiple knots permitted a more accurate 
description at the edge. When impedance matrix fill time 
is compared, entire-domain functions present a basic 
limitation, as the fill time increases impressively with the 
number of unknowns. The possibility of eliminating the 
spurious behavior in the current due to the strong 
coupling in the EFIE components is investigated. In 
particular, a linear factor introduced for the t-component, 
is potentially capable of stabilizing the solution at the 
same time that it enforces, a priori, the boundary 
conditions. 

Two other observations can be made with 
respect to the implementation of B-splines as basis 
functions. First, the use of an adaptive mesh grading 
(AMG) technique arises naturally with B-splines. It 
consists of concentrating the number of knots in critical 
regions where a faster variation in the solution is 
expected. This can be done by redistributing the knot 
points with respect to, e. g., a weighted combination of 
the arclength, curvature and edge proximity. Second, B- 
splines are also present in the context of Multiresolution 
Analysis (MRA). By using B-splines as a starting point 
(scaling functions) a sequence of "wavelet subspaces" 
can be generated [13], with asymptotic convergence to 
Gabor functions (modulated Gaussian) [10], which are 
optimally concentrated in both time and frequency 
domain. 

ACKNOWLEDGMENTS 

The authors thank Prof. F.J.V. Hasselmann for his 
useful comments. This research was supported by 
TELEBRÄS under Contract PUC-TELEBRAS 513/93 - 
JDPqD. 

REFERENCES 

[1] R. F. Harrington, "The Method of Moments in 
Electromagnetics", J. Electromag. Waves andAppl., vol.1, no.3, 
pp. 181-200, 1987. 

[2] L. N. Medgyesi-Mitschang and C. Eftimiu, "Scattering from 
Wires and Open Circular Cylinders of Finite Length Using 
Entire Domain Galerkin Expansions", IEEE Trans. Antennas 
Propag., vol.30, no.4, pp.628-636, 1982. 

[3] M. R. Barclay and W. V. T. Rusch, "Moment-Method Analysis 
of Large, Axially Symmetric Reflector Antennas Using Entire- 
Domain Functions" , IEEE Trans. Antennas Propag., vol.39, 
no.4, pp.491-496, 1991. 

[4] E. Alanen, "Pyramidal and Entire Domain Basis Functions in the 
Method of Moments", J. Electromag. Waves and Appl., vol.5, 
no.3, pp.315-329, 1991. 

[5] J. R. Mautz and R. F. Harrington, "Radiation and Scattering 
from Bodies of Revolution" , Appl. Sei. Res., vol.20, pp.405- 
435, 1969. 

[6] A. W. Glisson and D. R. Wilton, "Simple and Efficient 
Numerical Methods for Problems of Electromagnetic Radiation 
and Scattering from Surfaces", IEEE Trans. Antennas Propag., 
vol.28, no.5, pp.593-603, 1980. 

[7] G. F. Hermann, "Note on Interpolational Basis Functions in the 
Method of Moments", IEEE Trans. Antennas Propag., vol.38, 
no.l,pp.l34-137, 1990. 

[8] F. L. Teixeira, J. R. Bergmann, "Global vs. Bandlimited Basis 
Functions in the Analysis of Axisymmetric Reflector Antennas", 
IEEE Antennas Propag. Int. Symp. 1995 Digest, vol.2, pp.1166- 
1169,1995. 

[9] D. R. Wilton and S. Govind, "Incorporation of Edge Conditions 
in Moment Method Solutions", IEEE Trans. Antennas Propag., 
vol.25, no.6, pp.845-850, 1977. 

[10] M. Unser, A. Aldroubi and M. Eden, "On the Asymptotic 
Convergence of B-Spline Wavelets to Gabor Functions" , IEEE 
Trans. Information Theory, vol.38, no.2, pp.864-872, 1992. 

12 



W. A.Davis and K. Mittra,   A New Approach to the Thin i - 
Scatterer Problem Using the Hybrid Equations", IEEE Trans.        .,    a   _\,          /->2     ,        /\2l1/2     o   _^\PP' 
AntennasPropag., vol.25, no.3, pp.402-406, 1977 wlth K2 ~ [vP + P )   +(z_z )   j      5 P2 ^  

APPENDIX 

[12] C. de Boor, "On Calculating with B-Splines", J. Approx. Theory, 
vol. 6, pp.50-62, 1972. 

[13] C. Goswami, A. K. Chan and C. K. Chui, "On Solving First- where K(ß2) is the complete elliptical integral of the first 
Kind  Integral   Equations  Using   Wavelets   on   a  Bounded K:„J   TU«  -fa^i   •      .    ,„„„  „„I.,„J   .   * *u      i. 
Interval", IEEE Trans. Antennas Propag., vol.43, no.6, pp.614- kmd-  The  mtegral  m   *   WSS  S°1Ved'  bUt ^  ab°Ve 

622,1995 integral is still  singular when   p = p'   and     z = z' 

(equivalently,    t = t'). The behavior of    K(ß2)  as 

t -> t' is given by: 

The objective of this appendix is twofold. First, 
it reviews the pseudo-analytic procedure used to remove lim   K(ßi) _ J_r^4 + ^nR _ ^nR -i 
singularities in the integrals that form the impedance t->t'   R2        2p 2 ^ 
matrix elements. Second, it shows how this singularity 
extraction can be done in a more exact manner by using ... .   „,    .   ,,       .    .     .     Ti.     ,,  ,     ,    , 
B-SDlines y 1S smSular- II 1S added and subtracted 

The singular integrals that arise in the 
calculation of impedance matrix elements (7) have the 
following generic form [5]: 

so that 7, is written as: 

T      T r 

h =/„ ~hi = 2Jdt\dt'ax(t)a2(t') ^hl+
£-^L 

0       0 L     K2 2P 

/=|dif|df'aI(r)a2(Oj^co.#cos^^r Jjdt'jdt'a^a^t')^ 
0      0 

where 

R-[^fH^^P^,nf 'SjLlZfcSE Md Cm te nUmeriCa"y 

anda1(f),a2(0 are functions that depend on the choice j T
F    a /?-> N 

of basis functions. The above integral has a singularity at ^22 = T J dt——X J dt'a2(t')£nRXi 

p = p',z = z',<t> = 0  which does not permit numerical ° ,=1 e» 
integration. It is rewritten as: 

T"     T" * -jkR 

where the interval [0,TF] was divided in N subintervals. 
Each subinterval defines a segment of the generating 

7 = \dt\dt'ax(t)a2{t')[ jd<l>(cos<j>cosn<l>- -)     curve C where the dependency of p' and z'with  t' is 
00 0 R       R       linearized: p'= p-+ a,(t'-tf);     z'= z\ + b,{t'-//) 

+J^] = /1+/2 and/?5=(r'-/0/)
2+r2    with f0/^(f/.s/.pj.a,.,*,) 

0 ° and   ?1(- = tXj(z'i,p'i,ai,bi).  In each  segment g;    the 

function  cc2(t')  is proportional to the basis function 
I, is a proper integral and the singularity is isolated in    ffP{fy The jntegrals oyer each ^   can bg evaluate 

72. Define: Rx = Up-p')2+(z-z')2]1'2, through a local approximation: 

1—7 a2(O
asao + axt' + a2t'

2 +a3?'3 since integrals of the 

ßi =     „       and £ = 0/2; Then: form 
Äi 

7>    7> „2 /^ =J^«[('-'o)2+'?]<*     "=°>W 
72 =2\dt \dt'ax(t)a2(t') \ 

aq 

00                        0 /?iv(l + /?i sin £)                are tabulated. With the use of B-splines, the coefficients 
7>   7>                            . of the local polynomial approximation equal the B- 

= 2\dt\dt'ax (t)a 2 (t')       2 spline coefficients and thus no further numerical error is 
0    0                          ^2 introduced. 
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Abstract- The theoretical properties of a 
composite chiral-plasma medium are devel- 
oped. Using the reaction theorem, we obtain 
the proof of nonreciprocity based upon the 
constitutive relationships between the elec- 
tromagnetic vectors E, B, H, D. Using the 
Maxwell's equations and the proposed consti- 
tutive relations for a chiral-plasma medium, 
we derive the E and H vector equations and 
from these equations, dispersion relations and 
.E-field polarizations are found. 

Keywords: wave polarization, Faraday rotation, 
chiral-plasma medium 

INTRODUCTION. 

Chiral medium [1,2] and ferrite medium [3] have 
been studied over the last decade for many applica- 
tions. Chiral-medium have been examined as coating 
for reducing radar cross section, for antennas and ar- 
rays, for antenna radomes in waveguides and for mi- 
crostrip substrate. Here, we examine a chiral-plasma 
medium, where the plasma part of the composite 
medium is non-reciprocal due to the external mag- 
netic field. To find the general dispersion relation giv- 
ing w against k behavior, the vector phasor Helmholtz 
based equations are derived. We determine the modal 
eigenvalue properties in the chiral-plasma medium, 
which is doubly anisotropic. For the case of waves 
which propagate parallel to the magnetic field it is 
a cold magnetized chiro-plasma. We compare our 
results with the typical results obtained for a cold 
plasma [4]. Also we obtain the chiral-Faraday rota- 
tion which can be compared with the typical Faraday 
rotation for a pair of right- and left-handed circularly 
polarized waves. 

THEORETICAL FOUNDATIONS. 

We propose the following constitutive relations for 
chiral-plasma medium 

D =    e -E + hH (1) 
B   =   (iH + t2E (2) 

Plasma medium constitutive relations are [4] 

Dp    =    €p -Ep (3) 

Bp    =   HoHp (4) 

where 

7P= 
€i      ie2    0 

-ie2     €i     0 
0        0     e3 

(5) 

where e and 2^2 represent the permittivity tensor 
and chirality parameters of the composite medium, 
respectively. The lossless character of the magnetized 
cold plasma medium is implied by the Hermitian na- 

ture of the tensor (ep)T =ep. The superscripts * 
and T denote complex conjugate and transpose, re- 
spectively. 

In the search for new medium, which displays non- 
reciprocal properties, it is essential to establish the 
nature of the chirality parameters ti and t2- The 
anisotropic reaction theorem [5] is 

/ Ei ■ Jadv =     Ea- Jhdv (6) 

Here, we see that source currents Ja and Jj produce 
fields Ea, and Et, respectively, and the tilde over 
the fields indicates a new medium altered from the 
original medium, thus, we obtain 6x6 constitutive 
tensors 

A = 
iT -t iT 

-t fT (7) 
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and 

A = 
e     -t 

-i'    ß (8) 

with i and i' being the optical activity 3x3 tensors. 
Reciprocity occurs only if 

/ Eb ■ Jadv =  / Ea ■ Jbdv 

that is, by (6) it requires that 

Ä = Ä (9) 

For chiral medium we must obtain 

e = 0,     i = hl,     i'-t2I,     £ = 0 (10) 

To obtain reciprocity, (9) imposes 

-t2I
T =tj,      -t1I

T=t2I (11) 

that is, 

h = -h (12) 

For plasma medium (3). and (4) hold leading to 

e=7,     t=i' = 0,     jx = no = l. (13) 

Then for the proposed constitutive relations ((1) and 
(2)) we have 

D   =    e -E + hH 

B   -    noH+t2E 

(14) 

(15) 

VECTOR HELMHOLTZ EQUATIONS 

The E-field vector Helmholtz equation is derived 
by inserting the constitutive relation (14) and (15) 
into Maxwell's equations 

V x E    =    -iuB 

Vxi    =    iuD + J 

so 

V x E = -iufj,0H — iut2E 

V x H = iw 7 -E + iwtxH 

Solving for H, (18) gives 

H= — (-VxE-t2E) 
Ho \u> J 

(16) 

(17) 

(18) 

(19) 

(20) 

and putting this into (19) we obtain 

V x H = —-(V x V x E) - —V x E 

Then the i?-field vector equation is given by 

VxVxfi + iu>(t2 - *i)V x E 

(21) 

-w pofo    — 
Ut 1'2 

•£■ = 0 
, ^0        ^0^0 

(22) 

Here, the plasma current is included in the permit- 
tivity tensor e. 

Similarly the .ff-field equation is given by 

«.-l - „    «.-1 
Vx e     V x H + iw(t2 e     V x H -ti 
«•-l 

Vx e      xH)-udfi0 [I 
hh ~-i\ - 

A«o 
H = 0   (23) 

The inverse permittivity tensor is given by 

€     = 

«1 -ie2 0 

0 0 
0 

£2-e2 
(24) 

DISPERSION RELATION. 

Dispersion relation for the propagation vector k 
against w can be obtained from E- or .ff-vector equa- 
tion. We start with the i?-neld relation which is sim- 
pler than the .ff-equation. 

Defining E äs 

E = E0e — ihr (25) 

We obtain 

—k x k x E0 + u(t2 — ti)k x E0 

-u /i0eo  
hh 

eo     /^o 
Eo = 0 (26) 

Putting Eo into rectangular coordinates 

E0 = Exx + Eyy + Ezz (27) 

we obtain a three component system of equations 
which determine the eigenvector, and the determi- 
nant of the coefficient component matrix Mk will 
determine the eigenvalues, thereby yielding the u 
against k dispersion diagram in phase-space. Writ- 
ing Det(Mk) — 0, with kx = 0 and with symmetry 
about the z-axis we obtain 
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hh.) 

n2e0 riy/fioeo n
2e0 \       ^°ei/ 

ici   _ cos 0(t2 -t\) 
n'2€o n^/noeo 

sin 9(t2 — *i) 
Tiy/fJ-oeo 

— sin 9 cos 0 

sin fl(?2 — <i) — sin 0 cos 0 sin 0 £a_ fi_ lil2."\ 

= 0 (28) 

Here, the refractive index n is defined as 

ck , 1 
—,     where    c =    , = , 
w v/Mofo 

If /io = 1, eo = 1, ii = <2 = 0 we obtain 
the same results given by Krall and Trivelpiece for a 
magneto-plasma [4]. 

For a lossless chiroplasma, i.e., t\ = üy/ßäeö and 
t2 = —ityJ(i0£o, the non-trivial solution of this system 
comes from setting the determinant of the coefficients 
equal to zero, giving 

a5    =    nlw6 
e3 (4 - 4) (l - *^) (35) 

+2e0*2ei (e3 - e0t
2) - e2

0t
4 (e3 - c0t

2)] 

Here, there are four different eigenmodes for k as im- 
plied by (30). The components of the permittivity 
tensor are obtained using the constitutive equations 
(14) and (15), and are given by: 

wz 

f{0) = F{n2,W,€U€2,t,€3,k) (29) 

ei — 1- V- 
w2 — ™2ce 

(36) 

= ■Wce < (37) C2 
W tu2 — w2 

«3 = 1- t2- _      P 
2 ' W 

(38) 

Equation (29) is then the general dispersion relation 
for waves propagating in a cold collisionless homoge- 
neous chiroplasma in a uniform magnetic field. For 
given plasma frequency up, cyclotron frequency uc, 
wave frequency u and direction of propagation 9, (29) 
can be solved for the index of refraction n, having as 
parameter the chirality t. 

In terms of k, the dispersion relation is given by 

where wp is the plasma frequency and wce is the elec- 
tron gyrofrequency given by: 

<*>„ 

wce = 

47rnee
2 

eB0 

mec 

(39) 

(40) 

aik4 + a2k  + 0,3k  + a^k + 0,5 = 0 

where 

a\ oj^eipo [ 1  ) sin26 

2 It ^^0\ 2 n —w ezHo [ 1 J cos 9 

a2    =    0 

03 =    «>Vo 

toVo 

wVo 

desll-^ 

3t2€0 
eits    1 + 

ei 

«"♦?))' 
a4    =    -4fi0V//iOeo«)5i£2f3   1 - 

1- 

1- 

- e 

«3 

fe0 

^3 

t2£0 

£3 

(30) 

(31) 

(32) 

(33) 

cos2 8 

We can observe that for t = 0 we obtain the same 
expressions given by Krall and Trivelpiece [4] for a 
plasma medium. 

HIGH-FREQUENCY WAVES WITH AT || B0 AND 

fcl So- 

Setting 6 = 0, it is possible to find circularly po- 
larized waves from (28) by writing the JS-field vector 
equation in the form 

(n2 - €R)ER 

(n2 - eL)EL 

2^4 ■4eit 

cosG 

e3 [!--)£?, 

=    0, 

=   0, 

=    0 

sin 
where 

(34) tR,L = ei ( 1 ) ± €2 ( 1 - 
2tn 

£2 

(41) 

(42) 
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and 
ER,L = Ex±iEy. (43) 

It is useful to explore these solutions in terms of the 
wavenurnbers &R and &£ given by 

and 

tu     u   .  
kjt = — ± — y/ei - e2 

c      c 

tu        U    j  
*L = ± — yei + £2 

c       c 

(44) 

(45) 

where fc# is the wave number for a circularly polar- 
ized wave which drives electrons in the direction of 
their cyclotron motion, i.e., right circularly polarized 
waves and k^ is the wave number for a circularly po- 
larized wave which drives electrons in the direction 
opposite to their cyclotron motion, i.e., left circularly 
polarized waves. The t parameter modifies the typical 
plot of u(k) shown by Krai and Trivelpiece, where the 
cutoff frequencies are shifted. In Figure 1 we present 
the modifications introduced by the parameter t in 
the dispersion relations of the right and left polar- 
ized waves. In this Figure the dispersion relations of 
the right and left circularly polarized waves are indi- 
cated by circles and stars, respectively. When t ^ 0, 
ei and €3 depend on t and kR and &£ have a linear 
term, tu/c, as can be seen in (44) and (45). In this 
way, rather than to modify the curves that exist for 
t = 0, the parameter t permits that the wave prop- 
agates in a region of frequencies that is forbidden in 
the case t = 0. Another effect caused by the presence 
of the parameter t is a conversion of modes. We can 
observe in Figure 1 that for t = 0, there is no in- 
tersection of the dispersion relations of the right and 
left circularly polarized waves. When t ^ 0 we can 
observe that there is an intersection of these curves, 
indicating that the presence of the t parameter per- 
mits that a wave changes its polarization. 

In Figure 1 for t = 0 we can also observe that 
there is a region where only right circularly polarized 
waves propagate, a region where only left circularly 
polarized waves propagate and a region where both 
propagate. If their amplitudes are equal, the effect of 
the superposition of a left and right circularly polar- 
ized wave is to produce a plane wave with a particular 
plane of polarization. Because the two polarizations 
propagate at different velocities, the plane of polar- 
ization rotates as the wave propagates along the mag- 
netic field. This effect is called Faraday rotation. 

The global rotation of the plane of polarization as 
a function of distance in the direction of propagation 
is given by 

which means that the presence of the t parameter af- 
fects also the Faraday rotation. The chiral-Faraday 
rotation can be used as a plasma probe. In a lab- 
oratory experiment this would be done by launch- 
ing a planewave along the magnetic field in a chiro- 
plasma. Considering that the plane of polarization 
of this wave can be determined by an antenna and 
that we know the magnetic field, the density of the 
plasma and the frequency of the launched wave, the 
measurement of the plane of polarization away from 
the source can determine the value of the parame- 
ter t. For instance, considering for the plasma fre- 
quency, wp = 5s-1, for the electron gyrofrequency, 
wce = 2s-1, and for the launched wave, w = 6.5s-1, 
the value of the plane of polarization 10 mm away 
from the source is Ex/Ey = 85.76, Ex/Ey = 118.17 
and Ex/Ey = 186.11 for t = 0, t = 0.05 and t = 0.1, 
respectively. 

Setting 6 = ir/2, we obtain the following dispersion 
relations: 

and 

where 

kx = ± 

ko=± 

VA-VB 

VA + VB 

V^i-t2)' 

(47) 

(48) 

w2 

A=-^[4-4 + ^3 + *2(e 1 - es) - 2*4]     (49) 

and 

,4   r 

Ex . fkL 
jr = cot z. (46) 

B   =    ^ [((€?-^)-eie8)2 + 

f2(6e? - 6cic§ - 2eiel + 12e2e3 - 2e\e3) + 

t\-l5el + 8e2
2-18€1c3 + 4) + 

8*6(ei + e3)] (50) 

It should be pointed out that the eletric field of 
the extraordinary wave, kx is perpendicular to the 
magnetic field and the eletric field of the ordinary 
wave, ko, is parallel to the magnetic field. 

In Figure 2 we present the effect of the parameter 
t on the dispersion relations for the case 9 = TT/2. In 
this Figure the ordinary and extraordinary waves are 
indicated by circles and stars, respectively. When t = 
0.05, for 6 = 7r/2, the effect of the parameter is very 
small. We can observe that the dispersion relations 
are a little modified, but the parameter is not able to 
break up the forbidden regions that exist when t = 
0. When t = 0.5, the dispersion relations show very 
different curves with respect to the curves for t — 0, 
and there is no more bands of forbidden frequencies. 
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The difference in the way the t parameter acts in the 
parallel and perpendicular directions is due to the 
kind of equations we have. In (44) and (45) the t 
parameter appears as a linear term and in (47) and 
(48) the t parameter appears just inside a square root. 
We observe also that for 0 = 7r/2 the parameter t does 
not lead to the conversion of modes, as it happens for 
0 = 0. 
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Figure 2: Dispersion relations for various values 
of the parameter t when the direction of propagation 
is perpendicular to the magnetic field (6 = TT/2). 

Figure 1: Dispersion relations for various values 
of the parameter t when the direction of propagation 
is parallel to the magnetic field (6 = 0). W is the an- 
gular frequency normalized to hte plasma frequency. 
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Abstract — In this work a modified formulation of the 
transverse resonance technique (TRT) is presented. 
The difference between the usual TRT and the formu- 
lation presented here, MTRT, is the equivalent net- 
work considered. With the MTRT proposed formu- 
lation, mode solution identification requires less ar- 
duous work. The complete equation set is described. 
Numerical results are presented for dispersion charac- 
teristics of microstrip lines, coupled microstrip lines 
and conductor-backed coplanar waveguides (CBCW). 
When compared to results obtained by other meth- 
ods, a good agreement is observed. 

I. INTRODUCTION 

The recent developments made in microwave 
and millimeter-wave circuits (MIC), especially in the 
monolithic form (MMIC) where it is very difficult 
to tune the circuits once they are fabricated, have 
required extremely accurate computer aided design 
(CAD) programs [1]. Along with this, the consid- 
erable advances in computers have allowed a rapid 
evolution of the usual numerical techniques. In this 
sense, a modified formulation of the transverse reso- 
nance technique (MTRT) is presented in this work. 
One of the advantages of the MTRT, when com- 
pared to the usual TRT, is the possibility of ana- 
lyzing open side structures exactly, without the use 
of auxiliary geometry, which permits considerable 
reduction in the work for mode solutions identifi- 
cation. Numerical results are presented for disper- 
sion characteristics of microstrip lines, coupled mi- 
crostrip lines and conductor-backed coplanar waveg- 
uides (CBCW). When compared to results obtained 
by other methods, a good agreement is observed. 

II. THEORY 

In the conventional formulation of the TRT, a suit- 
able equivalent network is established, represent- 
ing discontinuity planes and boundary conditions, 
to compute the cutoff frequencies and possibly some 
additional characteristics of the structures [2]. The 
difference between the conventional and the modified 
TRT is the equivalent network adopted. In the TRT, 
the discontinuity planes are parallel to the conductor 

strips (Fig. 1), whereas in the MTRT they are per- 
pendicular (Fig. 2). Figures 1 and 2 present equiva- 
lent networks and respective matrix admittances for 
a microstrip. Mode coupling, that occurs at each dis- 
continuity, is represented by generic voltage sources. 
The different transmission line sections repre- 
sent      the      different    waveguide    sections     (in 

symmetry- plane 

L " 
discontinuity 

plane 

H-h 

[Y] = [[Ya]+[Yb]] 

Figure 1: TRT 

the MTRT case, two homogeneous waveguides (a 
and b) and one inhomogeneous (cd) ). The admit- 
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tances (YatttCd) represent the boundary conditions. 

symmetry plane 

\ 

H 

4 
w 

->i 

d 

discontinuity plane 

a ab 
[Ya]+ [Y cd ]    [Y cd ] 

[Y]= ba b 
[Y cd ]        [Yb]+ [Y cd ] 

Figure 2: MTRT 

The matrix admittance [Y] is obtained by the use 
of Kirchhoff's laws and it is deduced in the following 
way: 

[Ja]-[j'] = [Ya][Ea] 

[f] = [Ycd]([Ea] + [Ei]) 

(1) 

(2) 

(3) 

Substituing (3) into (1) and (2) yields 

[Ja] ~ ([Ycd]([Ea] + [Eb])) = [Ya][Ea]        (4) 

[J>]-([Yca]([Eo]+ &„])) = [¥„][&]        (5) 

The equations (4) and (5) can be rewritten as 

[Ja] = ([Ya] + [Ycd])[Ea] + [Ycd] [Eb] (6) 

[Jt] = \Ycd][Ea] + m + \Yc*])[Ei] (?) 

or in the matrix form 

[Ja] 

[Jb] 

(Pa] + M Wed] 

[Ycd] ([tt] + [Ycd]) 

[Ea] 
I I*] J 

(8) 

If it is assumed that suitable inner products (( |}) 
can be determined, equation (8) may be written as 

[Ja] 
[J»}\ 

(\)([Ya] + \Ycd})(\) (\)\Ycd}(\) 

i\)[Ycd}(\)        (ixmi + tnjxi) 

[ea] 

[et] . 
(9) 

Note that when { | }[Y]cd{ | ) involves only testing 
function in the region a(b) the notation { | )[Y°} >]{\) 
is adopted.  The notation ( | )\Y$]{ | ), or 
{ I )Kda]( I )> is adopted to indicate that testing 
functions in regions a and b are used in the inner 
products. In Fig. 2, the inner product symbol, { | ), 
is omitted. Matrix terms are detailed in the follow- 
ing equations. 

[Y^] = E^o 
|yi/i,n(zt/)J       l/i'i.nCz.oJ 

(10) 

[Y^n(yy)] = Wl^.,.(^l^') (11) 
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Krtyz)] = Wlf^Y^niKnlW) (12) 

[YVlM,v)] = (W\ftn)YVl,n(ftnm        (13) 

M = YZo 
yab \yab 
1 cd,n(yjr)J [■'ci,n(sr«)_ 

yab Va' 
c<J,n(zj/)J [   ed,n(z*)J 

(25) 

[nlin(«)] = wi/r,1»)^,»^,1»!«1)    (i4) 

with i/i = a, 6 

fö] = YTnU 

yo 1 yo 
[   c<J,n(ffs)J y-cd,n{yz) 

fyo 1 |ya 
I    cd,n(zy)] y   cd,n{zz) 

1cd,n{zy) 

(15) 

[YcXniyy)} = mf^YcdAftM) (16) 

fcW)]  = mfy,n)Ycd,n{fz,n\<l>az) (17) 

= (^l/,C,n)^,n{/y
C,„|^) (18) 

yab 
1 cd,n(yy) = (^\fS,n)Ycd,n(fSM) (26) 

[Yc
adb

n(yz)] = (4>y\fCy,n)YcdAfdzM) (27) 

1 cd,n(zy) 

yah 
cd,n(zz) 

= {tf\r,<n)Ycä,n{f!M) (28) 

= {4>1\ft,n)Ycd,n{finWz) (29) 

Kf ] = TIL 
yba V*a 

■fcd,n(y^)J [-'cd,n(s/z)J 

yba \v^a 
Icd,n(zy)\ [/ cd,n(zz)\ 

(30) 

lyba 
\1cd,n(yy) = {4>hy\fin)YcdAfyM) (31) 

1 cd,n(zz) mfCz,n)Ycd,n(fCz,n\<i>z) W) yba 
cd,n(yz) = (^Ify^YcdAflnm (32) 

[Yc
bd\ = E:L 

yb 
cd,n(yy) 

yb 
cd,n(zy) 

* cd,n(yz) 

yb 
Icd ,n{zz)\ 

(20) 

Yc
b
dMyy)] = {<pby\f^n)Ycdin(fln\<i>by} (21) 

Yc
b
d

a
Mzy)] = {<f>b

z\fin)Ycd,n(f^M) (33) 

= {<i>bz\fin)Yod,n{fCz,n\4>f) (34) 
yba 

cd,n(zz) 

where: 

4>vv\     are   testing functions that  satisfy  boundary 
conditions in the discontinuity planes, in region 
v\(y\ = a,b), on the axis 1/2(^2 = V, *)■ 

L     ' *■   'J /£ n   is the ntA basis function, which  describe   the 
electric  and magnetic fields in the region 2/3, on 
the axis 1/2 ("2 = V, z)- 

= {<i>bz\fdz,n)Ycä,n{fdyM) (23) L .    L        A Y„4 is the admittance, that represents the boundary 
conditions of the transmission line section, 
shifted  to the discontinuity plane, in the region 

yb 
cd,n(zy) 

yb 1 cd,n(zz) mfln)Ycd,n{fin\<t>z) (24) „4(„4 = a, b, cd). 
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The adopted testing functions are: LSE modes, 

^ = \/W^«*(W//0 (35) 

^zVWii'DnW/i') (36) 

h, a 
for (37) 

(H-h), b 

ly = n.r/h' (38) 

y, a 

y>=    { for (39) 

(ff-y) * 

1, n even 

Cn=    < /or (4°) 
2, n odd 

As the regions a and 6 correspond to homogeneous 
waveguides, the basis functions are TE and TM elec- 
tric field equations, on the axis y and z. 

TE modes, 

Jy,n — cy,n — 

yjK^+ly)^ 
cos(jyy')e' 

(41) 

Jz.n — c«,n 

TM modes, 

^Kl(K2+Ty)y 

sin(jyy')e 7l 

(42) 

/«-» =ea-* = \j7v    , ^"^       I cos(7„y')e"7^ 

(43) 

ra,6 _ .a,b _  | _.   VÖJ^V^    \ sin{lyy')e-^ fa>° = ea,° =    -7 
^/Kl(K2+7»)y 

(44) 
For the regions c and d that correspond to inho- 

mogeneous waveguides, the basis functions are LSE 

and LSM electric current density (J = -J^Hxax) 

field equations [2], on the axis y and z. 

fc    — Tc    = Jy,n — °y,n 

03fe$?) (fe) fe) «*&.*)"- 
fC       —    TC 
Jz,n ~ uz,n 

(»mi*!Q.) (%t£l) sinh(&, iy)e*" 

fd    - 7d    = Jjr,n — "y,n 

td    —id    — 
Jz,n       "z,n 

LSM modes, 

fC       _   TC       _ 

/?,„ = J!,n = o 

f1    — Td    = Jy,n y,n 

(45) 

with, 

-VW«0 cosh(4,2(ff - 2/))e7* 

J2,n — Jz,n       u 

A" = {H-h) 

elx:   _  g-(7l*+7»*) 

«i = e -r.*.(c-7.*)* 

K2=7*-(7*)* 

ffo = Uy/fiQir 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

llaW = -Kltr,a{i)-lt + % (58) 
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and £y,i and £s,2 are obtained from the solution of 
the following equation system: 

where 

4,1 coth(4,iA) + 4,2 coth(4,2A") = 0 

£y,i     "*"     £y, 
2        _ K2

0(l-er) 
(59) 

(60) 

The admittances are defined as functions of the 
boundary conditions and are given by: 

Electric symmetry 

Ya{b),n(x = W/2) = yn°(J) coth(7jr,a(6) W/2)    (61) 

Magnetic symmetry 

YaW,n(x = W/2) = Y«V Unh(lxAh)W/2)    (62) 

with 

y a(b) 2*'^h)   ,   TE    modes 
Jno£r,.(l) 

ya(b) = ,Ko<r,.W        TM     modes 

7i,a(b)      ' 

For electric side walls 

1 
Y°d = ^coth(1XtCd(L-W)/2) 

(63) 

(64) 

(65) 

with magnetic side walls 

Y? = — tanh (7x>cd(L - W)/2) (66) 

and for open sides structures 

Ycd — — 
N* 

where 1/JV* = l/(e|j) is defined in [3], and given by: 

LSE modes 

(67) 

(68) 

LSM modes 

(69) 

V\ 
/sinh(gM,2ft")   ~y 
V sinh(fyilfc) e   ; 

/ sinh ■inh({,.ah") (fy^K\ plxz\ 
sinh(?v>1Ä)   V  J'^oTx   )C      ) 

"2 
_  I £y,2 + -K"o ;(e7")* 

/cosh(?v,2fe") /€;.a+/rg\ ~„y 
d ^ sinh(5j,,ift)    \jueoCr7x J ) 

(vW«o cosh(gy,2ft")   ~ 
cosh(5si,ift) ) 

i/4 = 
_(ey,2+K? 

JUC0Jx 
e7x VWeö 

(70) 

(71) 

(72) 

(73) 

Equations (9)-(73) are detailed in [4]. Equations 
for the coupled microstrip lines and CBCW are sim- 
ilar to these presented here and are also detailed in 

[4]- 
EEL NUMERICAL RESULTS 

Numerical results presented in this section were ob- 
tained by a computer program on a personal com- 
puter. In Fig. 3 the dispersive characteristics for 
a shielded microtrip are presented. Along with de 
quasi-TEM mode, higher order modes are consid- 
ered. When compared to results of [5], a good agree- 
ment is observed. 

In Fig. 4 the dispersive characteristics are pre- 
sented for open coupled microstrip lines. For the 
cases considered (er=2.35 and £r=9.7), the results 
obtained are in accordance with the ones obtained 
in [6]. 

In Fig. 5 results are presented for a boxed CBCW. 
The dispersive characteristics for the quasi-TEM 
mode are presented for two different strips spacing 
(S=0.10mm and S=0.40mm). When compared to 
results of [7], obtained by the usual TRT, a good 
agreement is observed. 

rv. CONCLUSIONS 

In this work, a modified formulation of the transverse 
resonance technique (MTRT) is presented, which is a 
versatile technique to compute dispersive character- 
istics of transmission structures. With the MTRT 
proposed formulation, mode solution identification 
requires less work, especially when higher or- 
der modes are considered. The complete equation 
set is described. Numerical results are presented for 
dispersive characteristics of microstrip lines, coupled 
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microstrip lines and CBCW. When compared to re- 
sults obtained by other methods, a good agreement 
is observed. 
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Abstract - The main objective of this work is to show how 
the properties of a ferrimagnetic material change the 
characteristics of a microstrip patch with several layers. 
Particularly, it is investigated how the resonant frequency 
and the radiation pattern are changed by varying the 
ferrimagnetic layer thickness or the magnitude and/or 
direction of the external applied magnetic field. The 
analysis is carried on by using Hertz potentials and 
Galerkin method. 

I. INTRODUCTION 

The development of microstrip structures using 
ferrites has been considered by several authors [2]-[6]. 
The basic idea is to take advantage of tuning possibilities, 
which are provided by varying the magnitude / directions 
of the external magnetic field. 

It was observed that, a special attention has been 
dedicated to the study of microstrip antennas and 
resonators on anisotropic dielectric [1] and ferrimagnetic 
[2]-[4] substrates. The effect of dielectric and magnetic 
anisotropies on the resonant frequency, quality factor, 
bandwidth and radiation patterns of a single layer 
microstrip patch were reported. 

In this work, Hertz vector potentials, in the 
spectral domain, and the moment method were used to 
analyze the behavior of the resonant frequency for a 
microstrip resonator on a two-layer substrate, where the 
grounded one is ferrite and the other one is an isotropic 
dielectric substrate. 

Microstrip antennas / resonators are built by 
considering a conducting patch which lies on a substrate 
mounted on a ground plane. Several materials suitable for 
microwave applications may show some kind of 
anisotropy, either electric or magnetic. The microstrip 
antennas structures obtained by using anisotropic substrate 
have been studied since the 70's and some advantages 

have been reported, specially when this patch is compared 
to conventional antennas. Among these advantages are 
low cost, small dimensions and light weight. Of course, 
there are some disadvantages like the small bandwidth, 
high losses and low power handling capabilities. 

II. THEORY 

Fig. 1 shows the structure considered in this 
work. It is obtained by letting a conducting patch on a 
two-layer substrate, which is mounted on a ground plane. 
Furthermore, the ground layer (region 1) is ferrite and the 
top one (region 2) is filled with an isotropic dielectric 
material. 

Fig. 1: Geometry of a microstrip patch on a tv^layer ferrimagnetic substrate. 

The analysis is carried on by assuming that an 
external magnetic field, Ho, is applied along the y 
direction in Fig. 1. For region 1, filled with a 
ferrimagnetic material, the tensor permeability is then 
given by 

M-= M-o " 

Hr       0     -Jkr 
0 1 0 

Jkr    0     u, . 
(1) 
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where 

and 

Hr=l" 

k  =■ 

(YH0)(Y4TIMS) 

f2-(yH0)
2 

y47iMsf 

(2) 

(3) 
r   f2-(yH0)

2 

In (1) to (3), 7 is the gyromagnetic ratio, 47iMs is 
the magnetization saturation and f is the operation 
frequency. 

The electric, IIe, and magnetic, rih, Hertz 

vector potentials are assumed to be in the same direction 

as HQ, giving 

ne=neäy 

nh=nhäy 

(4) 

(5) 

The expressions for the electric and magnetic 

fields, as functions of IIe and Ilh, are obtained from 
Maxwell's equations as 

E, = -j©n0nrVxIIhl +co2erIe0^0 
\     ^      J 

-w-n el 

ne) + 

(6) 

H, = jcösrls0^( 

^2-^w,    - 
v   n2 !p)~ Vxnel + 

»2£rl
£0^0^rnhl+VV-n hi (7) 

and should satisfy the wave equations given below 

V2-kf 
V2nel+G)2SrlS0H0 

V      Hr 

Ui=0 (8) 

v2nhl+co28rls0n0nh 
d2n hi 

dy2 0    (9) 

In the Fourier domain [1], the wave equations are 
obtained as 

^n. 
dy 

F-YÄ^O (10) 

8 

7 

6 

5 

4 

3 

2 

1 
0.5 

Fr (GHz) 

1   \ 
i 

" 2   \      \. 
- 

- 3 v^ - 

"    l-h2 = h,/2           ^ - 
2- h2 = h,/8 

_    3- h2 = 0.0 (F~--- 

oooo [2] 

i i 

1 1.5 2 
L(cm) 

Fig. 2 : Resonant frequency versus patch length: 
w = 0.4 cm, hi = 0.127 cm, 8ri = 15.2, sa = 2.35, 
Ho = 5024 Oe, 4?tMs=1200 G. 

^n, hi 

dy2 Y2
hnh] = o 

where 

Y2=a2+ß2-ß)2srls0n0 

Ye=K(a2+ß2)-<Ö2Srie0^r 

(11) 

(12) 

(13) 

For dielectric regions 2 ( isotropic ) and 3 ( air ), 
the electric and magnetic fields are obtained from (4) to 
(13) by imposing u, = 1 and kr = 0 and replacing e^ by 
Sr2 ( for region 2 ) or by s^ = 1 ( for region 3 ). 

After some algebraic manipulations, the 

transformed electric field components, Ex and Ez, at the 
interface y = h12 ( Fig. 1 ), are expressed as functions of 

the transformed surface current density components, Jx 

and Jz, as 

E   =Z   J  +Z   J X XX    X xz    z 

&z ~ ^zx^x + ^zz^z 

(14) 

(15) 

and 

Then, Galerkin method is used as described in 
[7]. The basis functions used in this work are those given 
by [7]. The determinantal equation which gives the patch 
complex resonant frequency ( Fres = Fr + jF;) is obtained. 

To determine the radiation pattern, the far field is 
expressed as function of the transformed electric field 
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components at y = h12 (Fig.   1), by using the phase      numerical results suggest that this analysis may be used to 
stationary method [ 8]. The far field expressions are [9] 

Ee(<|>,e)ccsin<|>Ez(a,ß) 

E+ (<|>,e) °c cos9 cos<|> Ez(a,ß) + sin<|> Es(a,ß) 

with 
a = o2 Uo So sin9 cosc(» 

ß = ö)2Uo Eo cos9 

(16) 

(17) 

(18) 

(19) 

III. NUMERICAL RESULTS 

The results obtained for the resonant frequency 
and the radiation pattern are depicted in Fig. 2 to 5. In 
Fig. 2, the patch resonant frequency is shown against its 
length, for several values of h2. Notice that the shape of 
the curves obtained for different values of h2 is about the 
same. This is an expected result because of the high value 
of Ho = 5024 Oe. 7 = 2.855 MHz/Oe. A very good 
agreement was observed for microstrip patches on a single 
ferrimagnetic layer, when the results obtained in this work 
are compared to those available in [2]. 

The radiation patterns are shown in Figs. 4 and 
5, for the E and H planes, respectively. The shapes of 
these curves are similar to those obtained for microstrip 
patches on isotropic dielectric substrates. Once again this 
is due to the high value of Ho = 5024 Oe. y = 2.855 
MHz/Oe. 

Fig. 3 depicts the behavior of the resonant 
frequency against the normalized external magnetic field, 
Ho / (4jtMs). Note that, when Ho / (4rcMs) increases, the 
resonant frequency increases, suggesting tuning 
possibilities, through the variation of the magnitude of 

H0. 
A comparison between the results of this work, 

for the particular case of a suspended microstrip patch on 
isotropic substrate is shown in Fig. 6. The results of this 
analysis were obtained by setting Ur = 1 and kr = 0. A very 
good agreement was observed with the results from [1], 
for suspended microstrip patch antennas. 

IV. CONCLUSION 

The analysis of rectangular microstrip patches on 
layers were studied, in order to investigate the effect 
produced by the magnetic anisotropy of the grounded 
layer. The analysis was developed in the Fourier domain, 
by using Hertz potentials and moment method, showing 
accuracy and efficiency. The theoretical analysis and the 

investigate other parameters of the antenna and/or their 
arrays. 

Are] 

Or 

100 

G(degrees) 

Fig. 4 : Radiation pattern Ee(<|> = rc/2,0): w = 0.4 cm; 
L = 1.0 cm; h, = 0.127; h2 = h,/2; E,I = 15.2; Ea = 2.35; 
Ho = 5024 Oe; 4rcMs = 1200 G; Fr = 6.43+J0.0064 GHz. 

Ael 

60       80      100 
<j> (degrees) 

Fig. 5 : Radiation pattern, Ee(<|>, 6 = n/2) : w = 0.4 cm, 
L = 1.0 cm, hi = 0.127, h2 = h,/2, s„ = 15.2, za = 2.35, 
Ho = 5024 Oe, 4TIMS = 1200 G, Fres = 6.43+J0.0064 
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Fig.6: Resonant frequency versus patch length : 
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Abstract - In this work, the fall-wave analysis of circular 
cylindrical microstrips and backed slotlines is performed, 
by using a combination of Hertz vector potentials and 
Galerkin method. The analysis is developed in the 
spectral domain. 

I. INTRODUCTION 

The dispersive analysis using Hertz vector potentials in 
the Fourier domain was first used to analyze planar 
structures, such as microstrip transmission lines [1] and 
patch antennas and resonators [l]-[4]. This work 
describes an extension of this technique to study non- 
planar structures, such as those considered in [5]-[l 1], in 
order to determine accurately their characteristics and to 
investigate its application in (monolithic) microwave 
integrated circuits (M)MIC. The analysis of circular 
cylindrical microwave integrated structures is usually 
quite complex, requiring a large amount of computer 
time. To overcome this problem, accurate and efficient 
algorithms were developed [8]. A very good agreement 
was observed between the results of this work and those 
available in the literature, in particular [2]-[4], [12]. 

II. THEORY 

A. Circular Cylindrical Microstrip Lines (CCML) 
The microstrip structure considered in this work is 
shown in Fig. 1, where w = 2a r2 and a is half of the 
strip angle. In this analysis, the following 
approximations are assumed: a) the dielectric substrate is 
isotropic, linear and homogeneous, b) the ground and 
conducting strip losses are neglected, c) harmonic 
dependence for the electric and magnetic fields is 
assumed, and d) the conducting strip thickness is 
neglected. 

In   this   analysis,   the   electric   and   magnetic   field 
components are expressed in terms of the electric and 
magnetic    Hertz    vector    potentials,    nei and TC^, 
respectively, which are defined for each dielectric region 
i (i=l,2 in Fig. 1) as [8],[13] 

71 

7t\ %.. a hi       r 

(1) 
(2) 

where a,- is the radial unit vector. 

In the analytical procedure of the Hertz vector potentials 
technique, Maxwell's equations are used, giving 

B, = jcöu0s, V xjt. 
E. =-ja)^0Vx7Fh. 

(3) 

(4) 

where (i0 is the free space permeability, s, is the 
electric permittivity for dielectric region i (i = 1,2 in Fig. 
1) and © is the angular operating frequency. After some 
algebraic manipulation, the electric and magnetic field 
components are obtained. They are refered to the 
propagation TE and TM waves (with respect to r- 
direction, in Fig. 1). Then, the total electric and 
magnetic field expressions are obtained by superposition 
and given by 

EHOUOVXTI,. + ©2Ho£iTcd + VV.TT      (5) 

H= jcDEiVxS. + «oVoSiJ^ + VV.ii,.      (6) 

respectively. 

Furthermore, the electric and magnetic Hertz potentials 
should satisfy the wave equations 

V2 Ttci + ©2 Uo Sj 71^.   =0 

V2lh.+cfl2u<,eiiihi =0 

(7) 

(8) 

respectively. 

The transformation to the spectral domain is obtained 
using the following definition [8] 

Q(r,m)= JQ(r,^)exp(-j<»0)d^ (9) 
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ß(M>) =  2^(r>m) exp(jm<t>) (10) 

where  "~ "  means the transformed function and m is 
the spectral variable. 

The wave equations for 71  and ST      are determined 
ci hi 

from, and are given by (7) to (10) 

dr2 

with 

1 d 
7t

e,h,(
r'm)+-—^i.M(

r'm)-^Scih,(r'm) = ° r dr 

??=y?-(m/r)2 

Yf=kf-ß2 

(11) 

(12) 

(13) 

where y; is the propagation constant and k; is the wave 
number. 

air 

^=0 

i*W»i 

Figure 1: Cross sectional view of a circular 
cylindrical microstrip line. 

The solutions of   (11) have the general form shown 
below [8] 

S, (r,m) = A(m) Jm (y,r) + B(m) Nm(y,r)      (14) 

XM(r,m) = C(m) Jm(Ylr) + D(m)Nm(Tlr)       (15) 

for dielectric region  1  (ri< r <r2 , in Fig.  1), and 

Sc2(r,m)=E(m)H^(r,m) 

Sh2(r,m) = F(m)H<2,(r,m) 

(16) 

(17) 

for dielectric region 2 (r > r2, in Fig. 1), which is air- 
filled. 

In (14) to (17), the expressions for the unknown 
coefficients A(m), B(m),..., F(m) are determined from 
the boundary conditions; Jm(.) and Nm(.) are Bessel's 
functions of 1st and 2nd kind, respectively, and H^(.) is 
the Hankel function of 2nd kind. 

In this work, the transformed field components are 
expressed as functions of ^(^m), for the TE modes, 

and 5T (r, m), for the TM modes. By using superposition 
and imposing the boundary conditions, the expressions 
for the total electric and magnetic field components are 
obtained. 

At the interface dielectric-air (r = r2 , in Fig. 1), the 
transformed tangential electric field components, E and 

Ez, are expressed in terms of the transformed current 

density components, J+ and I , as 

E^(m,ß) = ZM(m,ß)Jt(m) + Zfe(m,ß)Jz(m) (18) 

Ei(m,ß) = Zz+(m,ß)Jt(m) + Zn(m,ß)T(m) (19) 

where, Z^,Zfe,Zrf and Zs are the transformed 

impedance matrix components in the spectral domain. 

Once the impedance matrix [z] was determined, 

the Galerkin method [14] is used and a linear system of 
equations is obtained, according to 

[K][c] = 0 (20) 

where the matrix [K] components are given by 

K* = Xftl(m)ZJm,ß)f+p(m) (21) 

Kt = S?,(m)Zfc(m,ß)f;p(m) (22) 

K^ = L?(m)Z ,(m,ß)?(m) 

„     _fj(m)Zz2(m,ß)fq(m) 

(23) 

(24) 

In (21) to (24), f^jf ,f   and f   are basis functions, 

which should be properly chosen in order to reduce the 
computational effort. The characteristic equation for the 
propagation constants in the structure considered is 
obtained by imposing det [K] = 0. Therefore, the 
effective permittivity is readily determined. 

B.   Circular   Cylindrical   Backed   Slotline   (CCBS). 

The geometry of the CCBS is shown in Fig. 2, where 
w = la r2 and a is half of the slot angle. This analysis 
is performed by taking advantage of that presented for 
CCML structures. In the case of CCBS structures, an 
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admittance matrix has to be derived. Nevertheless, this 
algebraic manipulation is avoided by setting [8] 

x>/x° 

m=w (25) 

where the matrix [Zj components are those shown in 

(18) and (19). 

air 
i«-Ty-»i 

0.37- 

0.36 

0.35 

0.34- 

0.33 

Figure 2: Cross sectional view of a circular 
cylindrical backed slotline (CCBS). 

By using Galerkin method, the characteristic equation 
for the propagation constants is obtained, as well as the 
effective permittivity. 

ffl. RESULTS 

A new parameter was defined to show the numerical 
results, which is R = r, / r2 (see Figs. 1 and 2). For small 
values of r, and r2, R is always lower then 1, while for 
large values of them, R is close to 1. The dielectric 
thickness of region 1, H (=r2 - r,), is kept constant. 

Fig. 3 shows the dispersive behavior of the normalized 
wavelength, X IX , for a circular cylindrical microstrip 

line (CCML) with W/H=1.0; R=0.98; En = 9.6 and 
80=1.0. 

Results obtained for the normalized wavelength, XJX0, 
and the effective permittivity, seff , against frequency for 
circular cylindrical backed slotlines (CCBS) are shown 
in Figs. 4 and 5, respectively. 

The results shown in Fig. 4, for Xs IX0, were obtained 
for a quasi-planar CCBS, with R = r,/r2= 0.98; Sri = 
20.0 and z,2 = 1-0. Results for a planar (not backed) 
slotline with same values for W, H, sr, and sr2 obtained 
from [12] are presented. As expected the results for these 
different structures approach each other because large 
values for W/H (=5.568) and sr were considered. 

Fig. 5 shows the numerical results for eeff that were 
obtained for a quasi-planar backed slotline, or a CCBS 
with a large value for R (=r, / r2) , where w=40 um, H 
=600 um, Sri = 12.9, sr2= 1 and R = 0.98. The numerical 

Figure 3: Dispersive behavior of the normali2ed 
wavelength,A.s/A,0, for a circular cylindrical microstrip line 
(CCML), with W/H=1.0; R=0.98; Ert= 9.6 and Er2=1.0. 

results from [6], for a (planar) backed slotline with same 
values for w, H, sr] andsr2 are presented. A close 
agreement is observed, as expected. 

IV. CONCLUSION 

The analyses of circular cylindrical microstrip lines 
(CCML) and circular cylindrical backed slotlines 
(CCBS) were performed by using a combination of Hertz 
vector potentials and Galerkin method, in the spectral 
domain. These structures are used in (M)MIC, 
applications, such as antennas, resonators and phase- 
shifters. 

Numerical results were presented for the normalized 
wavelength and the effective permittivity versus 
frequency for different structural parameters. 

A comparison between the results of this work and those 
available in the literature for the CCML showed a very 
good agreement. For CCBS, the results of this work were 
plotted with those obtained for similar structures, mainly 
planar structures, studied by other authors, showing 
agreement, as expected. 

Finally, the technique used in this work is accurate 
efficient and can be used to analyze other non-planar 
structures, such as those of single and coupled 
transmission lines on anisotropic substrates. 
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Figure 5: Effective permittivity versus frequency for a circular 
cylindrical backed slotline (CCBS) and a backed (planar) 
slotline. 
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Abstract - A lightning return stroke channel is 
modeled by a high loss transmission line. The 
differential equations that represent its dynamic 
behavior are solved by the application of the one- 
dimensional finite element method (FEM). By the 
combination of FEM results with the use of Maxwell 
equations applied to the dipole method, electric and 
magnetic (EM) fields are evaluated at various 
positions in space. 

I. INTRODUCTION 

The great increase in the number of components in 
new electronic equipment constitutes an everpresent 
concern for engineers dealing with problems of 
electromagnetic compatibility. As a consequence of the 
phenomenon, inaccurate readings may occur and system 
regulatory and control functions may be improperly 
activated. In a worst case scenario, this may lead to the 
destruction of the equipment. In general, the 
components operate at low voltage levels and thus 
remain quite susceptible to electromagnetic 
disturbances. The disturbances may originate from 
various sources, but the ones caused by lightning are 
among those principally responsible for the most serious 
occurrences [1]. 

During the last decade, much progress has been 
made in solving electromagnetic transient problems on 
digital computers. Ultimately, the usefulness of 
computer simulations must be proved by comparing the 
results with measurements obtained from field tests [2]. 
This will check not only the correctness of the 
algorithms but also the adequacy of the models. A 
careful error analysis of the measurements is often 
essential if differences have to be explained. 

To evaluate the electromagnetic field generated by 
lightning return strokes more accurately, it is of 
fundamental importance to choose a model which can 
adequately represent the evolution of surge along the 
channel. An adequate, representative model can be 
defined by using a physical or mathematical construction 
which behaves as, or approximates closely, the natural 
phenomenon in question. The Bruce-Golde (BG) model, 
the Transmission Line (TL) model, the Traveling 
Current Source (TCS) model, and others [l]-[5] are 
among some of the commonly employed models. 

The work presented here is based on the 
determination of EM fields generated by lightning return 

strokes, using a high loss transmission line model of the 
channel. The equations that govern the dynamics of this 
problem are solved through finite analysis, with results 
then applied to calculate EM fields at diverse points in 
space [2],[6]-[8]. 

H.  THE  TRANSMISSION LINE MODEL FOR 
STROKE 

Consider a lossy transmission line where L', C, G' 
and R' are the inductance, capacitance, conductance and 
resistance per unit length, respectively [3]. At a point x 
along the line, voltage and currentare related by 

dv(x,t)  = R>i , L, di(M) 
dx dt 

di(M)   =   G,v ,c, dv(x,t) 
dx dt 

(1) 

The  general   solution   of (1)  was   obtained   by 
Heaviside and Poincare. Using the Heaviside operator 

^=(*+L'p)i(M) 
dx 

(2) 

■^   =(G'+C'P)VM 
dx 

vCM^e^W+e-^t) 

.,    ,       IG' + C'F 
i(x,t) = -I  

(3) 
(e^W-e-^Ct)) 

With appropriate algebra the solution of (3) for an 
infinite line excited by a unit step function can be written 
as 

-OK 
,    v      -   0 x ft e-^ßk), 

v(x,t) = ev +ß- L P^dt 
v J-       k 

■M = £ e^I0(ßk) + (a-ß)£e-atI0(ßk)dt 
n(4) 

for t > x/v, where k = -Jt2 - x2/v2, IQ and Ii are are 
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zeroeth-order and first-order Bessel functions of 
imaginary arguments, respectively [5], and 

1 
v =   .—_- speed of propagation, (5) 

vL'C 

lfR'   G'^ 
a = -—+— 

2^1/    CV 
attenuation constant, (6) 

1 

"-2 

R'   G'\ 
— -I propagation constant.,   (7) 

The determination of the waveform at any point x on 
the line from (4) involves a numerical integration that is 
prohibitively time-consuming for an infinite line. A 
simplified solution can be obtained from the lossless 
transmission line equations [4], where the losses are 
represented by resistances at the ends and center of the 
transmission line; This is a good approximation for 
R«Z. 

HI. POINT-MATCHED FINITE ELEMENT 
METHOD 

In the leap-frog scheme, the time derivatives are 
represented by the forward Euler difference given by 

n+- 
8Vi   

2 
Vi

n+1-Vjn 

at         At 
1      1 m—       n— 

ai?__ij 2-i-} 
2 

(10) 

at At 

where I" is the current at xj at time nAt and V"2 is the 

voltage at x; at time (n+l/2)At. 

Using   appropriate   interpolation   functions,    the 
following final equations are obtained 

v„+1=2C'-G'Atvn 2At 

2C'+G'At   '   (2C'+G'At)Ax[ 

2At 

X'+R'Ap       (2L'+R'At)Ax 

C    1       A 

W-h2 

J 

°4=2L'-R'At-4 
J IT'  1 t>'A+  J 

(11) 

(v^-v?) 

This method [4,8-12] requires the line to be 
subdivided into a one-dimensional finite number of 
subregions called elements. Each element has several 
points called interpolation nodes. This allows "v" and "i" 
to be written in the form: 

Note that the solution to the Finite Element Method 
represented by (11) is stable [8] if 

v< 
Ax 

At 
(12) 

M 

v(x,t) = X*iWvi(t) 

N (8) 
i(x.t) = Zvj(x)lj(t) 

where "M" and "N" represent the number of nodes of 
the "V" and "I" finite element segments, respectively, 
and 4»j and \|/j are basis functions that interpolate the 

voltage and current within each element using the values 
at the nodes as interpolation coefficients. 

This approach is referred to as the point-matched 
time domain finite element method (TDFE) because 
^(x) and y.(x) are defined to be 

♦i(x) = 
1 at x = Xj 

0 at other nodes 

Vj(x)Hlatx"Xj JV
 ;     'Oat other nodes 

(9) 

is the wave propagation speed. This implies 
that the wave must not propagate more than one 
subdivision in space during one time step. To obtain the 
solution [8] set 

Ax = vAt. (13) 

TV.      ANALYTICAL      FORMULATION      FOR 
DISTANT FIELDS 

The lightning return stroke channel is modeled by a 
transmission line which is approximately represented as 
a thin wire vertical antenna attached to ground. Then, 
evaluations of the far EM fields generated by the channel 
are made. 

The particular case of a vertical antenna of negligible 
thickness and height "H" above a perfectly conducting 
ground plane, and carrying a conduction current i(z,t) is 
illustrated in Fig.l; The boundary conditions at the 
ground plane are satisfied by constructing a mirror 
image of the antenna as shown in Fig. 1 [7]. 

35 



Starting with Maxwell's equations, one can 
determine the electromagnetic fields in terms of retarded 
potentials: 

-      8A 
-V<{>- — 

dX (14) 

B = VxA 

With regard to the contributions of the image 
antenna, it should be noted that they are calculated in a 
manner analogous to a real antenna by substituting "ra" 
for "ri" in Fig. 1. In this way, the resultant EM fields can 
be obtained by integration along these two antennas in 
the z-direction, with the values of i(z,t) and i(-z,t) 
obtained from the solution of the transmission line 
equations (1) through the use of the finite element 
method. 

subject to the Lorentz gauge given by 

c2 dt 
(15). 

By manipulating (14) and (15) in the case of a rising 
current pulse in the z-direction of the channel, one 
obtains the following set of differential equations for the 
EM fields: 

.MoC2 

dE^Äpz-z^-^+^fidt 3 ft. 1   di 

ra'c   ra5Jo      nvV dt 
M* 

MQC
2
J 

431 

Moc2 

3i 
(pz-z)py—+— fidt+ 

ra c.     ra  J0 

1   5i 
„3„2 8t 

4n 
(V-P^+^-zftU-^ß* 

-fp^+py2) 

rac 

1 ft 

rare   ra: 

1   di 

äydz 

ra3c2 at 
idz  (16) 

dB, fi    -_üo 
real' 4rc py 

+—m 
4TC 

_i_     1  di 

ra3   ra2c dt. 

"J l_Si 

ra3   ra2c dt 

Mz+ 

äydz (17) 

V. RESULTS 

For the lightning return stroke simulations that 
follow, typical channel parameters encountered in the 
relevant literature were used [1,4,7]. Channel height was 
assumed to be 4 km, and the following additional 

parameters were used: C-3.5 pF/m, v = 1 /-JL'C = 80 
m/us, G'=0 S/m. The losses (R') vary from 0 to 1 Q/m. 
A triangular current function (1.125 x 25 us) with a 10 
kA peak value placed at ground level was used as the 
source of the channel model. Simulations were also 
carried out by using the formulation proposed by Uman 
[7] for a lossless line; The results are presented and 
compared with the solutions obtained from the 
formulation given in this paper, viz. equations (11). 
Finally, by the introduction of a finite value of resistance 
in the channel, EM fields are estimated for specific 
points in space. 

B.E 

B.E 
H2 

T 
H3 

n-^r"*^« 

where i=i(z,t')=i(z,t-ra/c), and t' is the retardation time. 

px,py,pz 

Perfectly 
conducting plane 

Fig.lrVertical antenna of height "H" above a perfectly conducting 
ground plane 

Fig.2:   Cloud  to   ground   lightning   discharge  and  the  resulting 
electromagnetic interference. 

The results obtained with the finite element method 
show considerable accuracy in comparison with similar 
results obtained with Uman formulation [7] (see Figures 
3 through 6). The oscillations observed in Figures 4, 6, 8 
and 9 are due to problems caused by the influence of the 
retardation time and by the definition of the time step 
used to calculate the current and EM fields. 

Introduction of resistance in the channel yields 
interesting results which can be observed in the EM 
waveforms (Figures 7 through 9). Some attenuation and 
distortion in B was expected and occured once the 
introduction of resistance attenuated and distorted the 
current waveform in the channel. 
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Fig.3: Magnetic field at distances of 1.0 and 1Ö.Ö km from the 
lightning return stroke, in the xy-plane (Uman) [7]. 
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Fig.4: Magnetic field at distances of 1.0 and 10.0 km from the 
lightning return stroke, in the xy-plane, with R'=0 Q/m 
(FEM). 
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Fig.5: Electric field at distances of 1.0 and 10.0 km from the 
lightning return stroke, in the xy-plane (Uman) [7]. 

Fig.6: Electric field at distances of 1.0 and 10.0 km from the lightning 
return stroke, in the xy-plane, with R'=0 Q/m (FEM). 
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Fig.7: Magnetic field at z=30 m, y=l km and z=2 km, y=l km with 
R=l Q/m (FEM). 
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Fig.8: Electric field at z=30 m, y=l km and z=2 km, y=I km with 
R = I Q/m (FEM). 
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Electric and Magnetic Fields 
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Fig.9: EM fields at a distance of 1 km from the lightning return 
stroke, in the xy-plane, with R=0 Q/m and R=l Q/m 
(FEM). 

Regarding the electric field E, the following 
observation can be made: its curve increased and 
decreased more slowly, suggesting a channel charge and 
discharge time alteration caused by the introduction of 
finite values of resistance R' in the channel (equation 
(11))- 

Finally, in Figures 7 and 8, EM field waveforms were 
obtained at points with pz*0, suggesting situations 
such as those shown in Fig.2. 

It is important to note that the following 
simplifications were made in the construction of the 
model: (a) the channel was considered uniform and 
vertical, (b) a perfectly conducting ground plane was 
used, and (c) the absence of subsequent discharges was 
assumed. 

VL CONCLUSIONS 

A consistent mathematical model of a lightning return 
stroke channel was presented, with the objective to 
evaluate the EM fields generated by the natural 
phenomenon of lightning at specific points in space. 
Different simulations were carried out, and the results 
compared favorably with those in the referenced 
literature. 

The elevated losses introduced in the lightning return 
stroke channel, as suggested in the referenced literature 
[10,12], cause numerical problems in most mathematical 
models of representation. On this point, a great 
contribution in flexibility by the use of the finite element 
method was observed, which properly treats the 
phenomenon of propagation in transmission lines with 
elevated losses. It is worth emphasizing that the 
utilization of the finite element method in the various 
problems goes far beyond others. Its flexibility can be 
properly   applied   to   other   lightning   return   stroke 

characteristics,   such   as   corona   effect,   nonuniform 
parameters in lightning channels, and so on. 
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Abstract - A point-matched time domain finite element 
method (TDFE) applied to the analysis of 
electromagnetic transients in multi-conductor 
transmission line network is presented. The TDFE 
method solves the partial differential transmission line 
equations based on a semi-discrete approximation using 
the finite element method and leap-frog scheme. Some 
oscillations can occur due to the stability condition of 
the technique. Using the modal analysis these 
oscillations can be eliminated. A surge propagation in a 
simple multi-conductor network is presented and the 
results are compared with the Electromagnetic 
Transients Program (EMTP) simulations. 

1. INTRODUCTION 

A transient is the situation that occurs when the initial 
stability of the system is disturbed and the system is 
forced to settle in other stability condition. They are 
usually of short duration and decreasing amplitude with 
respect to time, space or both. In engineering practice, 
studies of these conditions are of increasingly 
importance. 

The transient response of transmission line networks 
can be found by accounting for all interactions between 
forward and backward traveling waves as a result of 
discontinuities or disturbances. The evolution of the 
waveforms on the lines can be computed by solving a 
system of linear nodal equations in discrete time steps. 

Some transmission line problems cannot be adequately 
modeled by the equivalent circuit approach. For 
transient scattering applications the point-matched time 
domain finite element (TDFE) method has been used 
[1-10] with great advantages. One of the great difficult 
with this approach is the errors due to the stability 
condition necessary to obtain the numerical solution 
(the others are the boundary conditions) which can 
introduce high frequency oscillations in the simulations. 

This paper presents the modal analysis applied to the 
point-matched time domain finite element method for 

multi-conductor transmission line transient problems. In 
this approach, the propagation of disturbance on multi- 
conductor transmission line is simulated numerically in 
the modal domain by solving a n-dimensional boundary 
value problem at each time step. Results are presented 
for a simple network and compared with the 
Electromagnetic Transients Program (EMTP). 

2. TRANSMISSION LINE EQUATIONS 

The time domain formulation of multi-conductor 
transmission line problems (in the TEM approximation) 
can be described by a system of partial differential 
equations in (x,t) [11,12] 

dv(x,t) 

dx 
Ri(x,t)+L 

di(x,t) 

dt    ' 

= Gv(x,t) + C- 

0) 

dx dt 

where v(x,t) and i(x,t) are column vectors of the phase 
voltages and currents and R, G, L and C are the 
resistance, conductance, inductance and capacitance 
matrices per unit length respectively. There are n 
voltage and current equations describing the system and 
they are correspondingly increased in their number of 
terms to accommodate the couplings between the 
conductors. The simultaneous solution of these 
equations reveals n modes of propagation with, in the 
general case, each having its own velocity. Analytical 
solutions can be obtained for simple cases (e.g., lossless 
and distortionless lines) [11]. 

3. FINITE ELEMENT METHOD 

Using the finite element method in the solution of time- 
dependent problems, the spatial approximation is 
considered first and the time approximation next. Such 
a procedure is commonly known as semidiscrete 
approximation (in space) [13]. The finite element 
method requires the line to be subdivided into a finite 
number of regions called elements. Each element has 
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points  called  interpolation  nodes.   This   allows  the 
voltage v and the current i to be written in the form 

v(x,t)=%i(x)Vi(t), 
i = \ 

V 
(2) 

y=i 

where M and N are the number of nodes of the finite 
element segments, and ^(x) and \\ij(x) are basis 

functions which interpolate the voltage and current 
within each element, defined as 

before the voltage time derivative. Substituting the 
independent current and voltage terms in equation (4) 
by the interpolated values at t=n+'A and t-n-1/:, the 
following equations are obtained 

/;+"'2 = ziiL - RM)r111 -—zT^v; v }'     AX  'tr ck ° 
j = l,2,...,N, 

V"*'=Z2(2C-GAt)V"- — Z2f^rvl 
A '        Ax    2tt  dx    ° 

/ = 1,2,..., AT, 

(5) 

*/*;= 

%(*)■■ 

l X     =     X; 

0 at other nodes, 

1 x = x 

0 at other nodes. 

(3) 

where Z, = (2L + RAt)~x and Z2 = (2C + GAt)-\ The 
approximation functions §t(x) and \\ij(x) depend on 

the type of element (number of nodes). Using <j); (x) and 
\\)j(x) as first-order interpolation polynomials, (5) 
reduces to the following final equations [3,4] 

The two nodes of a first-order finite element are located 
such that each voltage element contains an interpolation 
node for the current and each current element contains 
an interpolation node for the voltage. Only the 
interpolation functions associated with the adjacent 
nodes contribute to the summation in (2). Hence, 
substitution of (2) into (1), using (3) yields 

ir=(2L-RAt)Z]ir-^4v^-v") 
j = l,2,-..,N, 

2At Vr' = (2C- GA/)Z, - — z(/;+,/2 -/,72) 
v ' -     Ax    2y' '"'   ' 

i = 2,...,N + \. 

(6) 

'     dt £f dx    °   J 

dt dx 

j = \,2,...,N, 

GC-X + d-^ = -C-±^IJt) 

(4) 

i = l,2,...,M. 

4. STABILITY CRITERION 

The solution to the leap-frog scheme approximation 
represented by (6) is stable [1,14] if 

At 
u—<1, 

Ax 
(7) 

In this equation, §a =§a(x), ya=ya(x), Va 

represents the value of the two voltage nodes adjacent to 
the current Ij, and la represents the value of the two 
current nodes adjacent to the voltage node Vt. 

This completes the semidiscrete finite-element 
formulation of (1), resulting in a set of ordinary 
differential equations in time. The second step is the 
time approximation, using the leap-frog scheme 
[3,4,14]. In the leap-frog scheme, the time derivatives in 
(4) are approximated by the Euler method, where the 
current time derivative is computed one-half time step 

where u is the wave propagation speed. This implies 
that the wave must not propagate more than one 
subdivision in space during one time step. Condition (7) 
can be analyzed using the step response of a single- 
conductor system shown in Figure 1 [5]. 

Using a fixed time step (Ar), for space discretization 
(Ax) greater than At, the solution for the transmission 
line differential equations is incorrect. For the matrix 
system presented in (6) the errors obtained with the 
TDFE method applied to the solution of the partial 
differential equations are due to a unique value of space 
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discretization  used  for  different  wave  propagation 
speed. 
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Figure 1 - Stability criterion 

5. MODAL ANALYSIS 

Wedephol [15] and Bickford [12] show that it is 
possible to normalize (1) and thereby replace them by a 
similar set of equations free of mutual terms. The 
problem then reduces to the solution of n single-phase 
equations of the same general form [16]. Just as the 
solution of the single-circuit wave equation leads to the 
mode of propagation and relationship between current 
and voltage (wave speed propagation and surge 
impedance) for the voltage and current waves on the 
single circuit, so the solution of these equations yields 
the n modes of propagation for the multiple conductor 
system. 

Rewriting (1) in the frequency domain, one can obtain 

d v(x,w) 

d2x 

8 i(x,w) 

d2x 

= (ZY)v(x,w) 

■(YZ)ifx,w) 

(8) 

where Z = R + jwL, Y= G + jwC. The approach used 
to decouple each one of those equations is similar to 
diagonalize either ZY or YZ [17]. In the diagonalization 

process, two transformation matrices are needed: matrix 
Q for the currents (/      = QImode) and matrix P for the 

voltages (K toc = PVmodc). P and Q are the solutions of 

the eigenproblems 

P'\ZY)P = yl 

Q-l(YZ)Q = j2 

(9) 

where y. is the i-th eigenvalue and the columns of P 
and Q are the eigenvectors of ZY and YZ respectively. 
The transformation matrices are theoretically complex 
and frequency-dependent. With a frequency-dependent 
transformation matrix, modes are only defined at the 
frequency at which the transformation matrix is 
calculated. Then the concept of converting a multi- 
conductor line into decoupled single-conductor lines (in 
the modal domain) cannot be used over the entire 
frequency range. It is possible to find an approximate 
transformation matrix which is real and constant. The 
errors of this approximation vary with frequency. They 
are small in one particular region and large in other 
regions, depending on how the approximation is chosen. 
However, the problem of how to choose this constant 
transformation matrix remains. 

There is a class of conductor configuration in which the 
process of diagonalization is greatly simplified. It is 
called balanced system. A balanced transmission line is 
defined as a line where all diagonal elements of Z and Y 
are equal among themselves, and all off-diagonal 
elements are equal among themselves. Balanced lines 
have a useful property, that is, the transformations to 
decouple their differential equations are independent of 
the particular system. There are several well-known 
transformations for balanced lines: symmetrical 
components, Clark's transformation, Karrenbauer's 
transformation, among others. For Karrenbauer's 
transformation 

(\       1 1 

1    \-n       1 

1       1       \-n 
P = Q = 

u 1 1 \-n) 

(10) 

where N is the number of conductors. For lossless high 
frequency approximation one can show that (10) is a 
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good approximation and can be used to solve some 
problems. 

6. NUMERICAL EXAMPLE 

A performance test is considered using the circuit 
shown in Figure 2. This simple geometry was chosen 
for two reasons. First, its boundary conditions are stable 
(open ended lines and simultaneous switch closing) and 
easy to compute. Secondly, a balanced lossless three- 
phase transmission line is used for simplification of the 
modal analysis application. 

; 0.0 sec. 

Un = 1.0 pu V 
3 phase -_ ^ 

synchronous   '(**')—& • 
voltage 
source -QJc-z 

Z0,v0/Z+,v+ 

o-c 

Figure 2 - Example circuit 

Table I shows the switching surge modal parameters for 
the system of Figure 2. A switching surge is computed 
considering that the switches close at time t=0, for 
maximum voltage at phase 1. Figure 3 shows the 
voltage at the end of the line (phase 2) where high- 
frequency oscillations can be seen due to the different 
wave propagation speed. 

Table I - Modal parameters 

Figure 4 shows the results for the numerical simulation 
using the modal analysis. Using three equivalent 
decopled single-conductor lines the oscillations due to 
the stability criterion are eliminated. For comparison, 
Figure 5 shows the same results obtained from the 
EMTP simulation (Microtran version [18]). 

Figure 4 - TDFE method with modal analysis 
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Figure 3 - TDFE method 

Figure 5 - EMTP simulation 

7. CONCLUSIONS 

The point-matched time domain finite element method 
applied to the numerical solution of the multi-conductor 
transmission line partial differential equations is stable 
but some high frequency oscillations can occur due to 
the different line speed wave propagation. 

Applying the modal analysis to the numerical solution, 
the simulation errors are corrected. Some 
simplifications were made to obtain the transformation 
matrices. Work is in progress to obtain better results by 
modifying the constant-frequency approximate 
transformation matrices. 
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Abstract: The aim of this paper is to present different 
error estimates to improve accuracy in linear and 
nonlinear self- adaptive finite element field calculation. 
The first estimator is based on the polynomial theory, the 
second one makes an estimation of the flux density 
divergence, the third one is linked to a magnetomotive 
force associated to elements sides, and the fourth one is 
based on the use of the bilinear element. All methods 
were implemented in our software named LMAG2D 
developed at "Escola Politecnica da Universidade de Säo 
Paulo", Brazil. 

error evaluation was modified so as to allow for non- 
homogeneous domains. The second method is 
associated to a local error estimator and makes an 
evaluation of the flux density divergence for every 
element within the mesh. The third one is based on the 
inter-element discontinuity of the magnetic field 
intensity, when the magnetic potential vector is used. 
In the fourth method, the error estimation is based on 
the difference of two unlike fields: one is calculated 
with first order finite element triangular calculation 
and the other with a bilinear quadrilateral element. 

I. INTRODUCTION 
II THE ERROR ESTIMATORS 

The design of an electromagnetic device has always 
been a hard task for both electrical and electronic 
engineers. The development of the Finite Element 
Method (FEM) and Computer Aided Design (CAD) 
techniques have changed several topics associated to 
the design of electromagnetic devices. 

The Finite Element Method is reliable when the 
domain is wisely divided and self-adaptive schemes can 
greatly improve the quality of the mesh. 

Self adaptive schemes [1] provide an adequate mesh 
to analyze the electromagnetic phenomena. The 
solution of the problem is more accurate, therefore 
more reliable. Consequently some relevant 
electromagnetic quantities such as flux, force and 
torque become more reliable. 

A self-adaptive scheme is always based on an error 
evaluation. Several methods have been proposed to 
estimate the error on finite element analysis. Usually, 
the error estimators are based either on complementary 
methods, or on approximated estimation using field 
derivatives [2][3J. 

In this work, four estimators are proposed. The first 
one based on the polynomial theory is a modification of 
the estimator proposed by Feraandes et al [3].   This 

All estimators here proposed are associated to a 
bidimensional magnetostatic problem linked to a finite 
element model, where the magnetic vector potential is 
applied. 

The first error estimator is based on polynomial 
interpolation theory. According to Dhatt and Touzot[4], 
for first order triangular element, the error can be 
written as: 

e = C0l2Max( ) (1) 
<?2A. <?2A .<?2A 
dx2 ' dxdy' dy2 

where C0 is a constant 
A is the magnetic vector potential 
1  is the element biggest side 

The procedure for calculating the second 
derivative of the potential is similar to the one 
proposed by Fernandes [3], i.e., 

Step 1: The flux density in each vertex is the 
average of the flux density vectors in triangles that 
contain this vertex. 

In this calculation the triangles must have the same 
magnetic property; thus, in non-homogeneous 
problems, the adopted procedure to evaluate the error 
is based on a multi-valued flux density at the interfaces. 
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This change makes Fernandes's error estimation more 
reliable. 

Step 2: The flux density calculated in Step 1 leads 
the calculation of the second potential derivative by the 
use of the following hypothesis: the flux density is a 
linear interpolation of the nodal flux density. This 
hypothesis is assumed only for error calculation. 

The second proposed error estimator is based on the 
divergence of the flux density. Firstly, the flux density 
vector is calculated in each node as the average of the 
flux density vectors in triangles that contain the vertex. 
The same procedure has already been adopted in the 
first error estimator (Step 1). To calculate the flux 
density vector within the triangles, the same shape 
functions applied to the magnetic vector potential were 
used. The determination of this vector divergence can 
be, in the whole domain, assumed as an evaluation for 
the solution error. 

3 

e = ä^B = drv(NiBi) = £[(gradNi).Bi]        (2) 
i=l 

Both estimators use the same flux density nodal 
evaluation, whereas the error evaluation reached by 
each method is different. 

The third proposed method calculates the tangential 
magnetic field vector discontinuity on the sides of the 
triangles. Such discontinuity is associated to the 
solution error when the magnetic potential vector is 
used. 

The discontinuity is only due to the numerical 
solution and it is linked to a magnetomotive force on 
the element side, because around this side Ampere's 
law is not satisfied by the numerical solution.Thus, in 
each triangle side, there is a magnetomotive force (Ji2), 
which can be understood as a "side error" evaluation: 

J12=|Htl = Ht2|l12 (3) 

On each side of the mesh, Equation (3) shows that 
side error (J12) is associated to the jump of the 
tangential component of the magnetic intensity, 
multiplied by the side length. 

In this work, the error is associated to the nodes 
because this procedure does not require significant 
changes in the main code, or in the data structure. The 
nodal error can be written as: 

(NV ^ 
ei =  2>i/2> 'a; (4) 

Vj=i ) 

Where: NV is the total number of vertex and nj is the 
total number of the sides that contain the node i. 

So the nodal error ej is the arithmetic mean of all 
side errors associated to the node. 

The fourth method to evaluate the error is based on 
the use of a bilinear element. In a first order triangular 

mesh, a set of quadrilateral elements can be build 
(Fig.l). Each element has three neighbor triangles, 
from which it is possible to have three different 
quadrilateral elements built. If, however, two neighbor 
triangles have different magnetic proprieties, the 
quadrilateral can not be created, for the quadrilateral 
element must have only one magnetic propriety. 

quadrilateral 12 

quadrilateral 14 
quadrilateral 13 

Figure 1 Three neighbor triangles 

The local error can be written as: 

-Jl* 
a 

Bq dfi (5) 

where B is the flux density, calculated by the finite 
element method, using a first order triangular element; 
Bq is the flux density, calculated using quadrilateral 

elements and Q is one of the quadrilateral elements. 
Thus, in the general case, a set of three error values 

can be computed for each triangular element. The local 
error in each element is assumed as being the highest 
value in the set. 

For all proposed estimators, the applied adaptive 
refinement is a combination of a bisection, a Delaunay 
triangulation and an optimization of the nodal 
coordinates. 

m TEST CASES 

The efficacy of an electromagnetic field solution with 
a self-adaptive procedure can be measured either in 
cases where the analytic solution is known, or in 
problems where the numeric solution has been 
exhaustively tested by an electromagnetic field solution 
software, or in cases where experimental results are 
available. 

Three test cases were then analyzed. The first one 
has an analytical solution through conformal 
transformations. It consists on the L-shaped region as 
can be seen in Figure 2. 
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Figure 2- Geometry and Field Distribution for the First Problem 

Simkin[5] has proposed a problem, where the main 
objective is the force computation in an iron part. The 
geometry of the problem is shown in Figure 3. Lowther 
[6] suggests solutions to this problems. 

^, conductors 
\ 

4 
s                           "s v.                               J 

1 
<-> 

2 f 
f              *s 2 

1 
iron - relative 

permeability 1000 
dimensions: cm 

Figure 3 Geometry for the second case 

The third case is a 75 kW permanent-magnet electric 
motor, which has a nonlinear behavior. This case was 
divided into three different subcases: an open-circuit 
test, a test to evaluate the inductance per phase, and one 
on-load condition test. 

IV RESULTS 

The indicators showed a satisfactory performance, 
concerning precision and convergence ratio related to 
local and global quantities for the analyzed cases. 

Figure 4 shows the energy convergence of the first 
case for the first three adaptive proposed procedures. 

They are also compared to a regular mesh in figure 4 
and all estimators have a high convergence ratio and 
provide a minimum of energy with fewer nodes than 
the regular method. 
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Figure 4 Energy Convergence 

To calculate the precision on the magnetic vector 
potential along XY segment (Figure 2), analytical and 
numerical solutions are compared, and the deviation 
between them both was computed. Figure 5 shows the 
deviation on the magnetic vector potential along this 
segment, when the estimator based on the divergence is 
applied. High errors were reached only on the vicinity 
of the singular point (X) [7]. 

_X10~ 

0.2     _        0.4 0.6 0.6 
Distance between X and Y (m) 

Figure 5 Error on the Potential - Case 1 
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In the second case, more complex than the first one, 
satisfactory results were obtained for the calculated 
force, applying the virtual work principle. Figure 6 
shows the field distribution, and Figure 7 shows the 
obtained mesh when the third method was used. 

TABLE 1 COMPARATIVE RESULTS FOR THE SECOND CASE: 
FORCE CALCULATION 

Figure 6 Field Distribution for the Second Case 

Figure 7 Mesh for the second problem 

Table 1 shows some important results linked to the 
second case. 

Method Force (N) Nodes Lowther's Result (N) Iterations 
1 6170 

6280 
6130 
6158 

3010 
2892 
1445 
2215 

6146 
8 

2 6 
3 7 
4 6 

High accuracy was obtained by methods 1, 3 and 4 
because these error estimators identify more elements 
for refinement on the corners of the iron part and on 
the conductors. 

According to Simkin [5], a refinement on the corners 
of the ferromagnetic part is the key to achieve a high 
precision force calculation. 

The deviation of method 2 is the highest because 
the iron-air interface is well divided in triangles, but 
the conductors and the surrounding air around the part 
do not have a proper discretization. 

The third case presents a nonlinear behavior of the 
ferromagnetic material. The self-adaptive scheme 
provides a good mesh and good results, compared to 
the prototype, for the four error estimators proposed. 

Figure 8 shows the field distribution for the PM 
motor at no-load, using method 1. The self-adaptive 
scheme provides a minimization of the errors and 
symmetry can be observed in the figure. 

Figure 8 Field Distribution for the PM Motor at no-load 

An electromotive force at no-load in an auxiliary 
winding was calculated and compared to the 
experimental data and a good agreement was reached. 
Table 2 shows, for the four estimators, the main data 
for the self-adaptive processes. 
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TABLE 2 COMPARATIVE RESULTS: THIRD CASE - E.M.F. 

Method Number of 
Nodes 

Iterations Calculated 
e.ra.f. 
(V) 

Measured 
e.m.f. 
(V) 

1 1276 4 3.42 
2 1779 3 3.40 3.61 
3 769 6 3.41 
4 1651 4 3.37 

Table 3 shows some relevant data related to the self- 
adaptive processes, using the four proposed estimators. 
A good agreement between experimental and calculated 
data was achieved. 

TABLE 3 COMPARATIVE RESULTS - INDUCTANCE 
CALCULATION 

The calculation of the inductance per phase was also 
performed, and the end-winding inductance was 
considered using analytical methods. Figure 9 shows 
the mesh obtained and Figure 10 shows the field 
distribution, using method 2. There is a high density 
mesh around the energized conductor and also in the 
air-gap, because both regions have high density energy. 

Method Number of 
Nodes 

Iterations Calculated 
Inductance 

(mH) 

Measured 
Inductance 

(mH) 
1 1589 5 7.12 
2 2015 3 7.17 7.09 
3 2369 3 7.21 
4 1043 4 7.13 

A calculation of an on-load condition of the PM- 
motor was performed. Figure 11 shows the obtained 
mesh, and Figure 12 shows the field distribution when 
the fourth method was used. 

Figure 9 Mesh for the third problem: inductance calculation 

Figure 11 Mesh for the third problem: PM-motor on-load 

Figure 10 Field Distribution: inductance calculation 

Figure 12 Field distribution for the third problem: PM motor on load 
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Table 4 shows a comparison between the 
experimental and computed torque for the four 
proposed estimators. A good agreement was reached 
for all methods because the air gap was wisely 
subdivided in elements. The Finite Element Method 
can model accurately the armature reaction and the 
developed torque, only if the air-gap is wisely 
subdivided. 

The second and the third error estimator produce a 
reability that is lower if compared to the other two 
estimators. Even though, the obtained results show 
better accuracy for most analyzed cases. The CPU time 
for this estimators is usually shorter. 

Results show that a self-adaptive scheme is a 
powerful tool to improve accuracy in a finite element 
field calculation, even with nonlinear cases. 

TABLE 4 COMPARATIVE RESULTS-TORQUE CALCULATION REFERENCES 

Method Nodes Computed 
Result 
(N.m) 

Experimental 
Result 
(N.m) 

Iterations 

1 1075 320 
328 

4 
2 1809 329 3 
3 1961 332 3 
4 1823 327 4 

V CONCLUSIONS 

This paper analyzes four error estimators. The first 
and the fourth error estimators provide adequate 
element mesh to analyze electromagnetic field 
phenomena. 

Relevant to say that the first error estimator implies 
in shorter CPU times than the fourth one due, to its 
simplicity. The use of a multi-value density flux at 
interfaces made it more effective in calculation with 
heterogeneous media. However, the fourth error 
estimator is also reliable. 
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Abstract - This work presents a computational model 
for the evaluation of transient voltage and 
longitudinal electric field distributions in single layer 
air core reactors. The influence of a grounded 
shielding concentric to the reactor is considered. The 
validity of the model is verified by comparing 
computed and measured voltage responses at three 
taps of a test reactor. Analyses showing the influence 
of the grounded shielding, front time and front wave 
shape of the applied voltage on the maximum 
longitudinal electric stresses along the reactor 
winding are presented. 

1. INTRODUCTION 

The evaluation of transient voltage and longitudinal 
electric field distributions in equipment windings are 
important for their optimum electric insulation design. 

The aim of this work is to develop an accurate model 
representing a simple single layer air core reactor. The 
knowledge acquired with the development and use of 
this model is an important basis for the development of 
accurate models of more complex equipment, such as 
three phases power transformers. In order to 
demonstrate that, a grounded shielding concentric to the 
reactor was modeled. 

The accuracy of the model supports the authors' belief 
that this work is a relevant contribution to the general 
effort in modeling winding equipment. 

2. EQUIVALENT ELECTRIC CIRCUIT 

The lumped parameter model for the calculation of the 
voltage and electric field distributions is obtained by 
dividing the reactor into a number N of sections which 
are electrically and magnetically coupled [1,2,3]. This 
procedure leads to the equivalent circuit shown in 

Fig. 1. 

Fig. 1: Equivalent electric circuit 

lii   : Self inductance of section i 
L[]   : Mutual inductance between sections i and j 
Cgj : Capacitance to ground of section i 
Cij   : Mutual capacitance between sections i and j 
R{    : Resistance of section i 

V\ 
/in 

: Applied voltage 
: Input current 

The influence of a grounded shielding cylinder, 
concentric to the reactor, is taken into account using the 
same procedure as for the reactor, i.e., dividing the 
shielding into a number M of sections that are 
electrically and magnetically coupled among themselves 
and the reactor sections. 

3.  COMPUTATION   OF   THE   ELEMENTS   OF 
THE EQUIVALENT CIRCUIT 

3.1 Capacitance Matrix 

The calculation of the capacitance matrix is done by 
using the Galerkin's method as describe in [3] or by an 
integral-equation technique described in [4]. 

The reactor and the grounded shielding are modeled by 
equipotential cylindrical surfaces divided into N and M 
cells (sections), respectively, which are not necessarily 
equal in length. The potential <(>,■ at a cell / is given by: 
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N+M 

(1) 

where Qj is the total surface charge on celly and p„ is 

the potential coefficient between cells / andy. 

Equation (1) forms a system of symmetric linear 
equations which can be written in a matrix form as: 

[♦] = Ho] (2) 

Solving this system for the charges [g] yields: 

[öH#] (3) 

where [c] = [/>] is the partial capacitance coefficient 

matrix [4,5], since its elements represent the capacitance 
coefficient among parts (cells) of the equipotential 
cylindrical surfaces. 

The capacitance matrix [c] as well as the capacitances 

to ground of several cells are found from matrix [c] [6]. 

The potential coefficient between two coaxial 
cylindrical cells [3], as shown in Fig. 2, is given by: 

Z 

Ri 

Ri 

Zt 

Fig. 2: Two coaxial cylindrical cells 

3.2 Inductance Matrix 

Consider the cells shown in Fig. 2 as two infmitesimally 
thin circular coaxial coils. From the application of 
Neumann's formula [6,7] to the turns localized at Z, 

and Zj, the mutual inductance between the coils is 

given by: 

hj+ljhi+li    * 
coscp tfq> dZj dZj f    f  f Wj 

Hj-lJhilU
R'2+Rj2+(z'-zj)2 

(5) 

-2RjRjCOsq> 

Pij=\   2 2% e0 

hj+lj  h,+l, 

i      r   ri>(*i) F(k2) 

Vj,Y   J 
hj-lj  h-l, 

dZt dZj (4) 

where E0 is the air permittivity, F{kx) and ^(^2) are 

complete elliptic integrals of the first kind with 

A,= 

Aj = 

(Zi-Zjf+fa+Rjf 

(Zl+Zjf+fa + Rjf 

1/2, _ i**Rj) 
A 

1/2, _ 2M 
> K2 - " 

A2 

1/2 

1/2 

In the expression (4) the ground plane is accounted for 
by the introduction of the image charges. 

where «, and «,- are the number of turns per unit 

length and cp is the azimuthal angle. All of the other 
variables have the same meaning illustrated in Fig. 2. 

The computation of the numerical value of   Ly   is 

carried out by using a technique based on Bartky's 
transformation which is described in detail in [7]. 

3.3 Resistance Matrix 

Since the model presents low sensitivity to the 
resistance frequency dependence [1,3], the d.c. values 
of Rj are used. 

4. SOLUTION OF THE EQUIVALENT CIRCUIT 

The numerical technique used in solving the electric 
equivalent circuit shown in Fig. 1 is based on two 
variable sets. The first set is formed by the total input 
current and by the voltages at the numbered nodes from 
2 to N. The second set is formed by the currents through 
the inductive branches of the circuit. 
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Thus, two matricial equations involving these variable 
sets are necessary. The first equation is obtained by 
establishing the relationship between the two variable 
sets by means of the resistive and inductive elements 
and the second equation by means of the capacitive 
elements. 

The discretization of the circuit equations is achieved by 
applying the trapezoidal integration rule. 

For the consideration of a grounded shielding 
concentric to the reactor, it is necessary to include 
another variable set. This new set is formed by the 
circulating induced currents at the M sections of the 
grounded shielding, according to the discretization 
shown in Fig. 3. These currents are induced by the 
magnetic coupling between the reactor winding and the 
grounded shielding. 

5.1 Experimental Setup 

A test reactor and two  shieldings  were  built, 
dimensions of the reactor are shown in Table I. 

Table I: Reactor dimensions 
Length (m) 1.0 
Diameter (m) 0.110 
Wire Diameter (mm) 0.813 
Number of turns 1130 
Height above ground (m) 0.150 
Measuring tap positions 
from reactor top (m) 

Tap 1 0.2 
Tap 2 0.5 
Tap 3 0.8 

The 

The shieldings consisted of thin aluminum cylinders 
with equal lengths of 1.0 m and diameters of 0.26 m and 
0.22 m. 

Further details of the mathematical development are 
given in [2,3]. 

1 

1- ----12 
1                                           |j 

! Ji _ i 

:             ii+i 

I -IN- I 
["" "]M 

N+ 1 

N + 2 

N + 3 

N + j - 1 

N + j 

N + j+ 1 

N + M- 1 

N + M 

Fig. 3: Discretization of the system formed by 
the reactor and the grounded shielding 

5.   EXPERIMENTAL   VERIFICATION   OF   THE 
THEORETICAL MODEL 

In the following a brief description of the experimental 
setup is given. In order to show the validity of the 
model, a small sample of the comparative cases between 
the experimental and computed results is presented. 
Additional details are given in [1,2,3]. 

Three reactor configurations were used, as follows: 

Conf. 1 - Reactor without grounded shielding. 
Conf. 2 - Reactor with a grounded shielding of 0.26 m diam. 
Conf. 3 - Reactor with a grounded shielding of 0.22 m diam. 

The applied voltage wave shapes were produced by two 
low voltage sources (impulse and step wave shape 
generators). 

Measurements were performed using a digital 
oscilloscope with two probes. One probe was used to 
measure the applied voltage wave shape (Vl) and the 
other one was used to measure the voltage response in 
one of the measuring taps as shown in Fig. 4. 
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PI 

v.s. 

R 

Tl 

T7o+P2_ 

D.O. 

T3, 0 

v.s. Voltage source 
D.O. Digital oscilloscope 
R Reactor with/without grounded shielding 
P1,P2 Probes 
Tl, T2, T3 Measuring taps 

(b) 

Fig. 4: Experimental setup:  (a) photo,  (b)  schematic 
diagram 

5.2 Comparison   between  Measured  and  Computed 
Voltage Responses 

Fig. 5 shows the measured and computed voltage 
responses at taps 1 and 3 for an impulse voltage applied 
to the test reactor as in Conf. 2. The front time and time 
to half value [8] for the impulse voltage were 0.750 us 

and 44 \xs, respectively. 

1.4 ■[ 
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-0.4 

TIME (u ) 

Fig. 5: Measured (full line) and computed (dotted 
line) voltages responses 

6. EVALUATION OF THE LONGITUDINAL 
ELECTRIC FIELD ON THE REACTOR 
WINDING 

The  relationship   among  the   electric   and  magnetic 
potentials and the electric field is given by: 

£ = -VF-^ 
8t 

(6) 

Where E is the electric field, V is the electric scalar 

potential, A is the magnetic vector potential and t is the 
time. 

For cylindrical windings which present current 
distributions characterized by Jz = 0, similarly to the 
winding of the test reactor, the following applies: 

A=0 (7) 

where Jz is the longitudinal component of the 

superficial current density, J, and Az is the 

longitudinal component of A . 

Regarding Fig. 6 and equations (6) and (7), one has the 
following expression for the longitudinal component of 
the electric field Ez on the reactor winding: 

Ez(r0,z,t) = - 
dV{r0,z,t) 

dz 
(8) 

Considering a specific time instant, the above equation 
can be approximated by: 

E&) = 
K(/ + l)-F(/-l) 

2Az 
(9) 

where: 

z-        -> Position      on      the      reactor      winding 
corresponding to node  / of the equivalent 
electric circuit. 

£ tz \ _» Longitudinal component of the electric field 
at position z,- on the reactor winding. 

ytj\     _> Voltage at node / of the equivalent electric 
circuit corresponding to position z, on the 
reactor winding. 

Az       -> Distance between positions corresponding 
to two consecutive nodes of the equivalent 
electric circuit. 

Ez(j0,z,t)„ 

Fig. 6: Electric field on the reactor winding 
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Figs. 7(a) and (b) show spatial distributions of voltage 
and electric field, respectively, along the winding for a 
0.750/44 us impulse voltage applied to the test reactor 
as in Conf. 2. These distributions were computed at time 
instants which represent, approximately, 30%, 60% and 
90% of the front time of the applied voltage. 

In Fig. 7(b), Eunif represents the electric field due to a 

uniform voltage distribution, given by: 

V„ 
-'unif (10) 

Where Vmax is the peak value of the applied voltage 

and / is the total test reactor length. 
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longitudinal electric field which occurred along the 
winding during the application of the applied voltage. 

Fig. 7: Spatial distributions of (a) voltage and (b) 
electric field 

7. INFLUENCE OF SOME FACTORS ON THE 
MAXIMUM LONGITUDINAL ELECTRIC 
STRESSES ALONG THE WINDING 

7.1 Grounded Shielding 

Fig. 8 shows the envelopes of the longitudinal electric 
field along the winding for an impulse voltage applied 
to the test reactor for all configurations. These 
envelopes   represent   the   maximum   values   of  the 

■  Eunif         CONF. I      CONF. 2  ' 

0 10        20        30        40        50        60        70        80        90       100 

WINDING LENGTH (%) 

Fig. 8: Influence of the grounded shielding on the 
maximum longitudinal electric stresses 

7.2 Front Time 

Fig. 9 shows the envelopes of the longitudinal electric 
field along the winding of the test reactor as in Conf. 2. 
These envelopes were due to 0.750/44 us, 0.950/44 us 

and 1.150/44 \\s applied voltages. The same behavior 
was found for the remaining configurations. 

0 10        20        30        40        50        60        70        80        90        100 

WINDING LENGTH (%) 

Fig. 9:   Influence of the front time on the maximum 
longitudinal electric stresses 

7.3 Front Wave Shape 

Fig. 10 shows two applied voltage wave shapes which 
have the same front time and time to half value, i.e., 
0.750/44 us. 

Fig. 11 shows the envelopes of the longitudinal electric 
field along the winding for the test reactor as in Conf. 2. 
These envelopes were due to the applied voltage wave 
shapes shown in Fig. 10. 
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Fig. 10:   0.750/44 \is impulse voltages with different 
front wave shapes 
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Fig. 11: Influence of the front wave shape on the 
maximum longitudinal electric stresses 

8.  CONCLUSIONS 

An efficient discrete model to compute transient voltage 
and longitudinal electric field distributions in single air 
core reactor has been developed. 

The validity and accuracy of the model were verified by 
comparing experimental and computational results. 

A grounded shielding concentric to the reactor increases 
the maximum longitudinal electric stresses along the 
winding (Fig. 8). It must be pointed out that the stresses 
are higher for Configuration 3, showing that the higher 
the values of the winding capacitances to ground, the 
higher the maximum longitudinal electric stresses along 
the winding. 

Regarding Figs. 9 and 11, one can conclude that the 
maximum longitudinal electric stresses along the 
winding are strongly dependent on the front time and 
the front wave shape of the applied voltage. 
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Abstract - This paper presents a methodology for 
tridimensional analysis of the electric field produced by 
transmission lines. It utilizes the complex electric scalar 
potential, which makes it possible to consider variation of 
module and phase in the voltages of supply lines. The 
Finite Element Method (FEM) is applied to solve the 
differential equation that describes the phenomenon in the 
domain of this study. Finally, a comparison is established 
between the results obtained applying the proposed 
methodology and the values reached through the classical 
method of charge simulation. 

I. INTRODUCTION 

With a voltage level increase for transmission of large 
quantities of electrical energy, the effect of electrostatic 
field becomes an important factor in transmission lines 
(TL's) design. 

This problem has been receiving increasing attention 
in recent years, from electrical power companies 
throughout the world. The origin of this concern is due, 
not only to the constant increase in the voltage levels in 
transmission systems, but also to the steady growth of 
urban concentrations, resulting in an increasing number 
of residential areas with TL's. 

It is a well-known fact that the electric field produced 
by TL's at ground level, acting on a person, can cause 
nasty sensations, such as sparkling in the skin, attraction 
of the hair, organic and physiological alterations, when 
exposed for a prolonged period to a field of high 
intensity. 

There exists the further risk of people touching objects 
with a high degree of isolation in relation to the ground 
(such as vehicles, fences, antennas and others) and being 
in contact with electric currents that can reach alarming 
levels, as a result of the electrostatic energy stored up by 
these objects when exposed to electric fields. 

Although the gravity of some effects may still be 
debatable, the influence of the electrostatic field on men 
and the environment may become critical with the 
advent of high voltage and extra-high voltage TL's. 

There is also the problem of the interference that these 
systems (TL's) can cause in other nearby installations, 
such as pipelines for the transport of fluids (oil ducts, 
gas ducts, aquaducts, etc.), railways and communication 

systems, etc. For this reason, a study of the 
electromagnetic compatibility (EMC) between these 
installations and the environment in which they are 
inserted, has become a matter of fundamental 
importance. One way of evaluating the EMC of these 
installations (in terms of disturbances of electrical 
origin) is through a knowledge of the values and 
distribution in the electrical field produced by them. For 
this purpose, the availability of precise and versatile 
calculation tools becomes necessary in order to 
guarantee the quality of the results. 

The great majority of softwares for calculating the 
electric field of TL's are based on the axial symmetry 
that characterizes the fields in this installations, thus 
permitting a bidimensional analysis [1,6]. However, 
there are several different situations in which such a 
consideration could not apply, without giving incorrect 
results, or due to the very complexity of the geometry 
(for example, crossing among TL's). 

The proposed methodology allows for a tridimensional 
analysis, making possible the study of a series of 
practical and interesting situations, such as considering 
various TL's, with some laid out assymetrically in 
relation to others [2]. Another important aspect concerns 
the utilization of the complex electric scalar potential, 
that permits to calculate the field for a sinusoidal applied 
voltage, still making possible a temporal analysis of the 
phenomenon throughout a cicle alternation voltage. 

II. MATHEMATICAL FORMULATION 

The Maxwell's equations used are: 

curlH = J+—— 
3t 

r)B 
curlE+— = 0 

dt 

divB = 0 

(1) 

(2) 

(3) 

where His the magnetic field (A/m),  E  the electric 
field (V/m), B the magnetic flux density (Tesla), D the 

56 



electric flux density (C/m2),   /   the current density 
(A/m2) and t the time (s). 

The constitutive relations, concerning isotropic and 
linear materials are: 

D = EE (4) 

J = oE (5) 

where £ is the electric permissivity (F/m) and a the 
electric conductivity (ßm)"1. 

Utilizing equations (2) and (3) and knowing that 
(curlgrad) is always zero [2], yields: 

V = Vn 

-gradV- 
3Ä 
3t 

(6) 

But considering that in the case of the TL's, the 
electric field originated mainly due to the potential to 
which the conductors are submitted and, assuming that 
the variation of the values are sufficiently slow that the 
effect of the potential vector Ä can be ignored 

^  /at - 0)> we can define the electric field as: 

E = -gradV (7) 

However, the electric scalar potential V is not 
sufficient to represent the total characteristics of the 
electric field produced by TL's, for the voltages in the 
line supply are sinusoidal, showing variations in module 
and angle of phase [2]. 

Therefore is necessary to utilize the complex electric 
scalar potential, defined how: 

V = V0e j(ax+<x) 
(8) 

where V0 is the voltage to which the line conductors are 
submitted (V), a is the phase angle (rad), CO is the 
angular frequency (rad/s) and t the instant of time 
considered (s). 

Applying the divergent operator in the equation (1) 
and using equations (4) and (5), we get the equation that 
describes the phenomenon in the domain of this study: 

div [(<r + j(oe)gradV] = 0 (9) 

In this problem the following boundary conditions are 
considered: 

• Dirichlet boundary condition, where the value of 
complex electric scalar potential is specified. 

(10) 

• Neumann boundary condition, where the normal 
derivative of complex electric scalar potential is 
specified. 

dn (11) 

Since an analytic solution to equation (9) is difficult, 
numerical techniques are utilized to solve it. Applying 
the FEM to solve this equation, subject to contour 
conditions (10) and (11), for each element in the mesh, a 
matrix, called the matrix of elementary contributions is 
obtained. In our case, the elementary contribution matrix 
is complex and symmetrical. Its generic term is given 
by: 

gij= J [(c + jcoe)gradNi
tgradNj düe     (12) 

where i and j are lines and columns positions in the 
matrix, Nj and Nj are functions of nodal interpolation 

and Q.e represents the domain of the finite element 
being considered. 

The sum of all the elementary matrixes will form a 
global matrix system, where all the elements of the mesh 
are considered. This could be represented by: 

nno 
XgyVO 

i = l   J  J 
i = l,nno (13) 

where   Vj   is  the value of complex  electric scalar 

potential at node j and nno is the total number nodes 
in the mesh. 

The resolution of this matrix system gives the value of 
complex electric scalar potential at the nodes of the 
mesh. 

For its resolution the method of conjugated 
orthogonally conjugated gradients (COCG) is utilized 
[5]. Once the system is solved, the electric field can be 
obtained by (7). 

III. RESULTS 

In the following section, results obtained for three 
situations will be shown, in order to demonstrate the 
validity of the methodology utilized. 

A. Analysis of the 1050 kV three-phase transmission line 

Here, a curve on the lateral profile of the electric field 
is shown. It was obtained by FEM, for a three-phase 
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transmission line of 1050 kV (Fig. 3.1.2) and will be 
compared with the result given by the classical method 
of charge simulation and also with the values measured. 

The picture below (Fig. 3.1.1), shows the view in the 
plan of the domain of study. 

Fig. 3.1.1   Domain of study. 

In this case, the domain of the study was separated 
into 10586 elements. 79 iterations were needed to obtain 
convergence and a 4 minute and 28 second calculation 
time in a station Sun SparkStation 2. 

Table I, below, shows the main characteristics of the 
TL being studied [1]. 

Table I - Main features of 1050 kV transmission line. 

Voltage (kV) 1050 
Conductors per phase 8 
Diameter of conductors (m) 0,03307 
Diameter of lighting conductors (m) 0,01016 
Distance between phases (m) 15,20 
Height of phases (m)                                              18,93; 18,92; 18,27 
Distance between lightning conductors (m) 35,66 
Height of lightning conductors (m) 39,0 

It was adopted for ABC phase sequence calculations 
from left to right and t = 0. 
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It is observed in Fig 3.1.2 that the results supplied by 
FEM are satisfactory. In Fig 3.1.3 equipotential lines are 
shown with the application of FEM. They provide a 
notion of potential distribution within the domain of this 
study and also point to regions where the electric field is 
or is not uniform. 

Fig. 3.1.3   Equipotential lines. 

B. 1050 kV Line in the presence of material conductors 

In this case, we consider the existence of two metallic 
sheds, under phases of 1050 kV transmission line. The 
figure that follows shows the domain of this study. 

PI and P2 are lightning conductors and A, B and C 
are phase conductors. 

Fig. 3.1.2 Electric field calculated by FEM, CSM and measured values. 

Fig. 3.2.1   Domain of study. 

Fig. 3.2.2, presents a view of the equipotential lines, 
obtained for this study. 

58 



In this case, the domain of study was separated into 
39,600 elements. 35 iterations were needed in order to 
obtain convergence, as well as a calculation time of 5 
minutes and 23 seconds in a station Sun SparkStation 2. 
Tables II and III shown below, present the 

characteristics of each one of the lines considered. 

Table II - Principal features of 138 kV transmission line. 

Fig. 3.2.2  Equipotential lines. 

Voltage (kV) 
Conductors per phase 
Diameter of conductors (m) 
Distance between phases (m) 
Height of phases (m) 

138 
1 

0,03195 
7,0 

10,0 

The influence of the metal sheds on the potential 
distribution is observed, and consequently the 
distribution of values in the electric field. 

Due to the continuity of the tangential component of 
the electric field, the appearance of electric current 
density is observed in the inner superficial part of the 
conductor materials. 

C. Hypothetical case of crossing between two TL's 

Here we imagine the crossing (at 90°) between two 
TL's, one of 138 kV and the other of 500 kV. In the 
literature, no similar case is registered, which justifies 
the difficulty and even the impossibility of making such 
an analysis, with methods that were then available. For 
this case two curves on the lateral profile of the electric 
field were obtained, one on the y axis, that is, on the 
central phase of the 138 kV line (Fig. 3.3.2) and the 
other on the x axis, on the central phase of the 500 kV 
line (Fig. 3.3.3). The equipotential lines is shown in Fig. 
3.3.4. 

In the picture below (Fig. 3.3.1) is observed the 
approach of the domain of the considered study. 

Table III - Principal features of 500 kV transmission line. 

Voltage (kV) 
Conductors per phase 
Diameter of conductors (m) 
Spacing between subconductors (m) 
Distance between phases (m) 
Height of phases (m) 

500 
2 

0,03195 
0,40 
15,0 
18,0 
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Fig. 3.3.2 Curve on the lateral profile of electric field on the y axis. 

Fig. 3.3.1 Approach of the domain of study. 
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Fig. 3.3.3 Curve on the lateral profile of the electric field on the x axis. 

In this case, values were not measured for comparative 
purposes. Nevertheless, analyzing the two lines 
separately, it can be observed that the results obtained 
are coherent. 

Fig. 3.3.4  Equipotential lines in crossing between two transmission lines. 

IV. CONCLUSIONS 

In this study, a mathematical model was presented to 
analyze a tridimensional electric field generated by TL's. 

Values of the electric field are presented for two 
situations: one tri-phase transmission line of 1050 kV 
and the other a hypothetical case of crossing between 
two TL's. 

Potential distribution on 1050 kV line was also shown, 
considering the presence of metallic objects along the 
line. 

FEM has proved to be highly flexible, inasmuch as it 
easily permits the analysis of a large number of 
interesting practical situations, such as, the evaluation of 
values and of electric field distribution when there is a 
crossing of two or more TL's, the possibility of 
considering in calculations both the presence of 
conductor and/or multidielectrics materials, as well as 
irregularities of the land. 

Therefore it can be demonstrated that the methodology 
utilized makes possible the analysis of more realistic 
situations, and consequently leads to obtaining more 
correct results. 
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Abstract - Adaptive Finite Element (FE) mesh 
refinement combined with a robust and 
functionally reliable error estimate provides nearly 
optimal solution accuracy. The efficiency of 
adaptivity depends on the effectiveness of the 
mesh refinement algorithm and also on the 
availability of a reliable and computationally 
inexpensive error estimation strategy. An adaptive 
mesh refinement algorithm utilizing a hierarchical 
minimal tree based data structure for 2D and 3D 
problems is discussed in this paper. Two different 
'aposteriori' error estimation schemes, one based 
on the local element by element method and the 
other using the gradient of field approach are also 
presented. The usefulness of the mesh refinement 
algorithm and the error estimation strategies are 
demonstrated by adaptively solving a set of 2D 
and 3D linear boundary value problems. The 
performance of the error estimates is also verified 
for adaptive modeling of a nonlinear problem 
involving the design of a permanent magnet 
synchronous machine. 

I. INTRODUCTION 

Due to the presence of discretization errors in any 
numerical modeling, the accuracy of the solution 
is limited. An accuracy in the range of 5% - 10% 
is often acceptable for most engineering 
applications. However certain scientific 
applications require solutions with a higher 
accuracy, in the range of 2%-3%. When the 
solution is plagued by the presence of domain 
singularities such as boundary layers, re-entrant 
corners, sharp bends, and multiple material 
discontinuities, it is necessary to selectively add 
more degrees of freedom where the solution varies 
abruptly. Under these situations, adaptivity helps 
to optimally improve the accuracy by selective 
spatial decomposition of a problem domain. 

Many triangular and tetrahedral elements based 
adaptive mesh refinement techniques  were 

proposed in the past [1,2]. However only a 
limited number of adaptive strategies are available 
for generating quadrilateral and hexahedral meshes 
[3]. The main reason is that the triangular elements 
match irregular boundaries better than quadrilateral 
and hexahedral elements. On the other hand, for 
the same number of unknowns, quadrilateral and 
hexahedral meshes require only about half that 
many elements as are needed in triangular or 
tetrahedral element meshes. Although triangular 
elements provide a good approximation to curved 
boundaries and complex geometries, they often 
produce elements with obtuse angles which need 
to be corrected using a Delaunay triangulation. 
Moreover visualizing higher order elements and 
refined meshes is easier in the case of 
quadrilateral/ hexahedral element meshes 
compared to triangular/ tetrahedral elements which 
produce unstructured meshes. 

In an adaptive process, the critical areas of the 
problem domain are identified and refined based 
on a reliable error estimate. The equi-distribution 
of error in the problem signals the optimality of 
the adaptive mesh. An adaptive spatial 
decomposition technique employing first order 
quadrilateral elements in 2D and hexahedral 
elements in 3D utilizing a minimal hierarchical tree 
based algorithm is presented in the first part of this 
paper. Two different 'aposteriori' error estimation 
strategies for activating the adaptive mesh 
refinement are discussed in the second part of the 
paper. In the third part of the paper, many 
numerical examples with experimental results are 
presented to demonstrate the application potential 
of the proposed mesh refinement algorithm and 
the error estimation strategies. The effectiveness 
of 'a posteriori' error estimates in adaptively 
solving a nonlinear problem for the computation 
of design parameters of a high field permanent 
magnet synchronous machine is presented in the 
last part of the paper. 
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n. ADAPTIVE MESH REFINEMENT 
TECHNIQUES 

Starting with a coarse mesh, an efficient adaptive 
mesh refinement algorithm with the help of an 
error indicator and error estimator generates a 
nearly optimal mesh, in which the discretization 
error is equally distributed. It is imperative to 
generate a graded mesh in an adaptive process in 
order to produce a smooth solution. An adaptive 
mesh refinement algorithm should be capable of 
managing the computational complexity and data 
functions with a minimum of overhead on 
resources. In addition to providing an asymptotic 
rate of convergence, it should be able to handle 
different material properties and boundary 
conditions, while maintaining compatibility during 
the adaptive process. It must be flexible and 
robust and incorporate an efficient error estimation 
strategy to activate the adaptive process. Generally 
three different types of mesh refinement policies 
are available. A solution can be improved by 

reducing the size of an element (hmax-^0) or 
increasing the order of approximating polynomial 

(p-*°°) or combining both or by moving the mesh 
and relocating the nodes. Accordingly the mesh 
refinement procedures are classified as h, p, h-p 
and r-methods. In terms of number of degrees of 
freedom, the p-method is found to be nearly twice 
as efficient in convergence as the /i-method [4]. 
Many different algorithms and the associated data 
structures were proposed in the past for automatic 
adaptive mesh refinement [1-3,5]. The proposed 
adaptive mesh refinement algorithm utilizes a h- 
version based mesh refinement policy. 

A. Quadrilateral & Hexahedral Mesh Refinement 
Strategies 

In the proposed adaptive scheme, the use of a 
hierarchical minimal tree data structure reduces the 
amount of tree travel necessary during the mesh 
refinement. Although most of the mesh refinement 
methods available in the literature employ tree 
based data structures they are computationally 
expensive. In the present approach a one-level rule 
is applied in order to generate a graded mesh with 
smooth mesh transition. The imposition of a one- 
level rule generates a constrained node on the 
boundary between two elements (common edge or 
face) in the quadrilateral and hexahedral meshes. 
Due to this, the meshes produced by this method 
are called 1-irregular meshes. The constraint 
nodes are processed in such a way that the 
sequence of admissible adaptive meshes produced 

during the course of refinement will satisfy the 
compatibility and continuity conditions. Utilizing 
the local property of quadrilateral/hexahedral 
elements an element is subdivided to produce a 
congruent element The use of the one-level rule 
imposes the following conditions on the 
quadrilateral/ hexahedral mesh: 

- There cannot be more than one constrained 
node between elements sharing an edge in 2D. 

- There cannot be more than one edge or face 
constrained node between elements sharing a 
common edge or face in 3D. 

- The difference in the refinement level between 
adjacent neighbors cannot be more than one. 

Before proceeding to refine an element, a check is 
made on the large neighbors; if a large neighbor 
exists, it is refined first and the actual element is 
refined next. Fig. la and fig. lb illustrate the 2D 
and 3D adaptive meshes with constrained and 
regular nodes. 

1 1—1 \— 

i      : 1 ■ , , , 1 l_ 
 II       D      '  ■ '      "^ 

■(—< 1—11 

 1,  

11—' 1— 1— 

) i h ii—fr—H- }—II  

•   - Regular Nodes 
D   — Constrained Nodes 

a. 

0  - Represents Centroid of Parent Element 
"A- - Represents the Face Constrained Nodes (fen). 
a   - Represents the Edge Constrained Nodes (ecn). 

Fig. 1. Regular and constrained nodes, a. In 
quadrilateral mesh. b. In Hexahedral mesh. 
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The quadrilateral and hexahedral adaptive mesh 
refinement algorithm is based on the assumptions 
that the initial meshes are structured: the 
subdomains and the elements generated are of the 
same shape and type as that of the parents; if the 
initial meshes are admissible then the set of 
meshes generated during subsequent phases of 
refinement are also admissible. The basic set of 
initial data includes the element order list, node 
numbers, nodal coordinates and neighbor array 
and node types. The refinement proceeds by 
connecting the mid-points of the sides of a 
quadrilateral and the mid-points of faces of a 
hexahedral to the centroid of the element. After the 
refinement, an element order list is generated to 
maintain the natural sequence in order to identify 
the location of elements in the domain. The 
dynamic data structure maintains only two levels 
of the tree at any point in time during the 
refinement. New constrained nodes are created 
during refinement and the existing constrained 
nodes may become regular nodes. The nodes after 
refinement are identified as regular(m), 
boundary(bn), edge constrained(ecn) and face 
constrained(fcn) nodes. In addition to the one- 
level rule the minimal tree maintains a relatively 
simple data structure facilitating minimum tree 
travel during mesh refinement and thus reducing 
the computational overhead. 

IE. 'A POSTERIORI' ERROR ESTIMATION 

Minimization of the discretization error can be 
achieved by incorporating an efficient error 
estimation procedure which computes the error 
indicator to mark elements with more errors and 
error estimator which decides on the level of mesh 
refinement necessary. Error estimates are 
computed 'aposteriori' due to the uncertain nature 
of the discretization error at the beginning of the 
adaptation. Some of the heuristic error estimation 
methods are based on mathematical analysis with 
extensive numerical results and others are based 
on benchmark computations satisfying specific 
computational goals. This is due to the fact that the 
error estimates are sensitive to the complexity and 
structure of the problem domain, the mesh quality 
and the nature of singularities. Most error 
estimation procedures use the solution, its 
gradient, system energy, post-processed solution, 
continuity conditions of field components or the 
residual of the solution as the primary field 
components to compute the error [7,8]. The error 
estimates not only decide an the optimal mesh but 
also assess the quality of the computed solution. 
An error estimate with a high degree of reliability 

will ensure proper adaptation in all classes of 
problems irrespective of the nature of problems 
and the type of material interfaces. In order to 
provide an adaptive computation of 
electromagnetic fields, the 'a posteriori' error 
estimate should be computationally inexpensive 
and must be able to compute errors in complex 
domains and singular regions. Two different types 
of local 'a posterior' error estimates are briefly 
discussed in this paper. 

A. Error Measures 

It is important to choose a suitable error measure 
not only for computing error indicators and error 
estimators, but also to assess the quality of the 

computed solution. Let <Pex and 0 be the exact 
and approximate solutions respectively, then by 
using an L2 energy norm, error measures for the 
local error estimate can be derived as follows, 

We\\L2 = I e^edQ 

1/2 

e = \<Pex-&     (1) 

The relative energy norm error in percentage is, 

77 = (n<ai2+ii<ai2) 
1/2 

*ioo% (2) 

The admissible error is derived using the global 
relative error and the number of elements as 

Hella = 
V 

100 
ll$ll2 + ll#H2 

N 

1/2 

(3) 

A reliable error criterion for refinement can be 

derived as, £ = llellj / llella and an element gets 

refined whenever Q > 1, V Hell,- > lldlfl 

B. Local Error Estimates 

Local error estimates are advantageous compared 
to other methods since they are simple and 
computationally less expensive. It takes only a 
fraction of computational power necessary to 
solve a problem, since a local error estimate solves 
a local problem consisting of a subdomain with 
only a few elements. Another advantage of a local 
error estimate is that it accurately predicts elements 
to be refined in the critical regions of a problem. 
Of the two different types of local error estimates 
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presented, one makes use of an improved solution 
to compute the error and the other utilizes the 
gradient of the solution to estimate the error for 
adaptive mesh refinement. 

C. Element by Element Local Error Estimate 

The element by element local error method allows 
a solution of a small problem at the subdomain 
level to be solved for computing the error. Starting 
with a coarse mesh, a local error problem with a 
subdomain consisting of a patch of elements 
connected to a regular node is constructed. Since 
the local problem has only a few nodes, it is 
computationally less expensive. Based on the 
location of the regular node, Neumann and 
Dirichlet boundary conditions are imposed. The 
local problem L&=f thus created on each 
subdomain corresponding to the active node is 
solved using a quadratic approximation 
polynomial on an /i-version mesh. By repeating 
this procedure at all the active nodes and 
comparing the improved solution with the 
original, global solution, the error on each element 
is computed locally. Using the error measure 
derived above, selected sets of elements are 
marked for refinement. 

D. Gradient of Field Method of Error Estimate 

In singular regions of a problem, the gradient of 
the field or flux will be highest, since the rate of 
variation of the solution is larger compared to 
other regions. Here the local problem is formed by 
creating a subdomain consisting of a patch of 
elements connected to an active node. With 
appropriate boundary conditions, the local 
problem is solved and an improved gradient of 
field is computed. The error in the gradient is 
computed as the difference between the gradient 
from the local problem and the gradient of the 
original solution. The derivative of the solution 
becomes constant in the case of a linear first-order 
approximation. Due to this reason the gradient g 
will be discontinuous across neighboring 
elements. In order to improve the approximation 
of the true gradient value, the gradient at each 
nodal point g is computed using the local problem 
formulation. Based on the fact that the nodal 
values are heavily influenced by the changes in the 
field quantities of neighboring elements, the 
gradient is improved by means of an averaging 
technique. Let gex and g be the gradient in the 
exact solution &ex and in the approximate solution 

# respectively. Also let eg be the error in the 

gradient, then eg=\g-gex\. Since gex= V&ex and 

gex= V<P, the true error in the gradient is 

eg.=\V&ex-Vq. 

TV. TEST RESULTS AND DISCUSSION 

A. Linear Problems 

To evaluate the performance of the proposed 
adaptive mesh refinement algorithm and the 'a 
posteriori' error estimation procedures, different 
sets of linear and nonlinear problems in 2D and 
3D are modeled using adaptive computation. The 
first 2D case is the classical electrostatic problem 
with an L-shaped domain with a corner singularity 

in the form r2/3sin(26/3), where r and 6 are the 
polar coordinates. The second is a Poisson 
problem on a unit square region with a charge 
density p=l Coulomb/m2 at the center with a 

permittivity of £#. A uniform Dirichlet boundary 
condition was imposed to solve the 
problem. For both problems, using the coarse 
mesh and the initial solution the proposed local 
error estimates are applied to initiate adaptive mesh 
refinement. An intermediate mesh and the final 
refined mesh for the L-section problem are shown 
in fig. 2. The corresponding equi-potential plots 
are shown in fig. 3. The sequence of adaptively 
refined meshes for the Poisson problem are 
shown in fig. 4. The asymetry in the meshes is 
due to termination of the refining process. If the 
process were continued, they would eventually 
become symmetric. The corresponding solution 
plots are shown in fig. 5. In the L-section 
problem, the singularity is present near the re- 
entrant corner of the problem domain. Hence the 
error estimate identified more elements for 
refinement and so the mesh is denser near the re- 
entrant corner. From the solution plot 
corresponding to the refined mesh, it can be 
discerned that the accuracy of solution is 
considerably improved. 

In the Poisson problem a unit charge density 
exists in a small square region (0.2m x 0.2m) at 
the center of the domain. Due to the presence of 
charge density at the center, the field is stronger at 
the center compared to other regions and hence the 
refinement concentrates at the center. The 
sequence of solution plots verify that the accuracy 
of the solution is improved during each level of 
refinement. 
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Fig. 2. Intermediate and final adaptive meshes for the L-section problem 

Fig. 3. Contour plots for the adaptive meshes in Fig. 2. 

A magnetostatic problem in 3D is solved to 
compute the magnetic field and the stored 
magnetic energy for a given current density in a 

unit cube having a uniform permeability Ho A 
homogeneous boundary condition B.n=0 is 
imposed to compute the vector potential. A 
uniform current density Jx=0, Jy=0, Jz=107A/m2 

is applied along the side of the cube. The magnetic 
vector potential is used as the primary field 
variable in this problem. The initial mesh and the 
refined meshes are shown in fig. 6. The 
experimental values of stored magnetic energy and 
the corresponding errors are shown in table-1. 
The error convergence plot in fig. 7 shows a 
notable improvement of adaptive mesh refinement 
in minimizing the discretization error. From the 
sequence of adaptive meshes and the solution 
plots, the performance of adaptive the mesh 
refinement algorithm and the error estimation 
strategies are verified. 

V. NONLINEAR MODEL 

A carefully designed adaptive mesh refinement 
algorithm and error estimation method are capable 

of performing uniformly on linear and nonlinear 
problems. In order to test the performance of the 
proposed error estimate, a nonlinear problem 
involving the computation of design parameters 
for the design of a nonlinear high-field permanent 
magnet synchronous motor is modeled for 
adaptive FE analysis. The modeling and analysis 
of electrical machine design parameters is a 
complex task particularly due to the narrow airgap 
and the rotating flux due to the rotor and stator 
coils. To achieve optimal design and improved 
machine performance, accurate calculations of 
airgap flux density distribution and core losses are 
necessary. 

Mesh 
number 

Number   of 
elements 

Stored 
magnetic 
energy [MJ] 

Percentage 
of error % 

1 8 1.1044 49.98 
2 64 1.8983 14.03 
3 288 1.9231 12.91 
4 1212 2.1482 2.71 

Table-1 Numerical Test Results 
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A. Accuracy Improvement of Machine Design 
Parameters 

Permanent magnets are vital components in the 
design of machines. In synchronous machines, 
they eliminate the steady state conductor losses 
associated with the rotor. Since there is no need 
far an armature magnetizing current the stator 
copper losses are also reduced [9]. However most 
permanent magnets made of rare earth materials 
are very expensive. By employing different 
combinations of inexpensive magnets with rare 
earth magnets, an optimal design with improved 

efficiency can be obtained while maintaining the 
airgap field distribution. To determine the optimal 
design parameters, efficient modeling and 
computation of various design parameters is of 
paramount importance. The nonlinear problem 
modeled for adaptive accuracy improvement in 
this experiment involves a high-field permanent 
magnet synchronous machine utilizing two 
different types of permanent magnets for the 
design of the rotor. A rectangular magnet made of 
rare earth permanent magnets and an arc magnet 
made of inexpensive common materials like iron 
oxide are employed in the design. 

Fig. 4. Sequence of adaptive meshes for the Poisson problem. 

Fig. 5. Contour plots for the corresponding adaptive meshes. 

Fig. 6. Sequence of 3D adaptive meshes for the magnetostatic problem. 
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Fig. 7. Error convergence plot. 

B. Numerical Results 

Utilizing the symmetry of the domain, one fourth 
of the problem geometry is modeled. The 
modeling takes into account the steady state 
performance of the machine and also the 
sinusoidal variation of the rotor current. It is 
assumed that the rotor rotates at a constant 
synchronous speed A triangular element based h- 

version adaptive mesh refinement is employed in 
this model. The adaptive mesh refinement 
technique was initialized on a coarse mesh with 
1040 triangular elements and 574 unknowns. 
After computing the mesh refinement parameters, 
the mesh refinement was allowed to progress up 
to 4 levels and the adaptation was terminated with 
1560 elements and 838 unknowns. A sequence of 
adaptive meshes for the nonlinear problem and the 
corresponding contour plots (flux distribution) are 
shown in fig. 8 and fig. 9 respectively. For the 
sake of clarity, only an enlarged view of a section 
of the refined mesh is presented. From the 
smoothness of the flux distribution the accuracy 
improvement in the solution can be verified. From 
the numerical results the stator core loss and the 
airgap flux distribution can be calculated and 
compared with the available experimental values. 
The numerical test results along with the sequence 
of adaptive meshes and the corresponding solution 
plots establish the usefulness of the proposed 
error estimation strategy in solving a nonlinear 
problem for the improvement of design parameters 
of a permanent magnet synchronous machine. 

Fig. 8. Sequence of adaptive meshes for permanent magnet synchronous machine design. 

Fig. 9. Flux distribution plot for permanent magnet synchronous machine design. 
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VI. CONCLUSIONS 

A hierarchical minimal tree based mesh refinement 
algorithm employing a one-level rule along with 
two different local 'a posteriori' error estimation 
strategies are presented in this paper. The 
application of a minimal tree based algorithm 
stores only two levels of tree data structure at any 
step during the mesh refinement process thus 
reducing the tree traversal considerably, and 
therefore, providing a computational advantage 
over other tree structure based adaptive methods. 
The mesh refinement algorithm and the local error 
estimates are applied to solve linear and nonlinear 
elliptic boundary value problems adaptively. The 
numerical test results and the sequence of adaptive 
meshes demonstrate the application potential of the 
presented mesh refinement algorithm and the error 
estimation strategies. 
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ABSTRACT 
An approach for electrical machines design 

by using magnetic field computation 
coupled to factorial experiments is 
presented in this paper. Principles of 
factorial experiments are briefly reviewed 
and their application to design 
optimisation is explained. In this 
application experiments are replaced by 
magnetic field calculations. The procedure, 
which performs automatically all the 
numerical field calculations required, is 
described. The whole procedure is applied to 
a typical problem concerning permanent 
magnets synchronous motor with polar 
pieces. 

is necessary. Section two presents the method used 
to make an automatic link between the main design 
procedure and the magnetic field computation. This 
method frees the user from complicated task such as 
drawing or meshing. 
Finally, as an example of the use of the whole 
procedure, we consider the problem of the evaluation 
of the influence of the following three parameters: 

- air gap length; 
- magnet width; 
- slot openning. 

on the rated torque and the torque ripples of a 
permanent magnet synchronous motor with polar 
pieces. 

INTRODUCTION 

Nowadays, magnetic field computation has became a 
compulsary tool in electrical machines studies. 
Magnetic field softwares are able to compute, in 
taking into account the saturation, several 
characteristics of a machine such as the flux or the 
torque waveforms, values of inductances or any 
other electromagnetical characteristics. 
Consequently, used in a particular environment, 
magnetic field computation provides a possible 
guide for electrical machine design in an attempt to 
optimize its dimensions with respect to the 
specifications. 
To this aim, the introduction of magnetic field 
computation into a process of parameters variations 
and statistics processing, as factorials experiments, 
is proposed. Usually employed by industrials, the 
method of factorial experiments allows to know the 
behavior of a physical system with respect to a set 
of given factors. This knowledge is obtained by 
performing experiments [1]. In section one, we 
introduce the fundamental principles of factorial 
experiments adapted to the computation of the 
dimensions of an electrical machine by magnetic 
field software analysis. 
In this application, simulations carried out by 
means of a magnetic field software analysis serve as 
experiments. Since there are many design factors a 
large amount of field calculations are required. For 
that, an automatic procedure for parameters 
variations driving the magnetic field computations 

FACTORIAL EXPERIMENTS 

In a course of a design procedure, magnetic field 
computation code is very helpful to analyse the 
behavior and the performances of a projected 
machine. When a machine design must be 
optimised, a large amount of field calculations may 
be required. Factorial experiments are used here in 
order to planned these field calculations and to reduce 
their number. Optimisation of a machine design by 
factorials experiments associated with field 
computation is divided into three steps. 
The starting point of the procedure is a preliminary 
design, obtained by analytical design equations and 
rules deduced from the theories of electrical 
machines and the designers own experience. At this 
stage the designer may estimate that some 
specifications are not matched by this preliminary 
design and desire to modify some factors in order to 
improve it. 
At the first step of the procedure the designer must 
choose the main electromagnetical characteristics to 
be improved and the main influent design factors. In 
the terminology of factorial experiments method, 
the first type of variables are the output data and the 
second ones the input data. Let the output data be 
Yi ... Yk and the input data X\ ... Xn. 
The second step consists of experimenting in order 
to know how the ouput data vary in function of the 
input data. Here experiments are replaced by 
magnetic field computations. From the set of 
magnetic field computation results the variations of 
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the electromagnetic characteristics (Y^) in function 
of the design factors (Xj) can be modelled by 
polynomials. These polynomials can either be 
linear: 

Y^ta^ (1) 
j=0 

or quadratic: 

Yk=a0+ta?Xj + iai
k

JX1Xj 

The coefficients a^j or a y are obtained by applying 
the method of multilinear regression, based on the 
principle of least squares, on magnetic field 
computations results. The choice of the set of 
experiments or magnetic field computations 
corresponding with machine design factors must be 
very precise. With a study of k design factors on an 
electromagnetical characteristic, each of this factor 
having p levels of variations, p^ magnetics field 
computations must be carried out. Each of this 
computation is then characterized by a particular 
combination of values of the k factors. A matrix X 
is built with p^ lines and k columns: one line per 
magnetic field computation and one column per each 
coefficient ai or aij. To reduce the size of the matrix 
X in keeping fiability and precision, several 
methods such as the fractionnal planes method or 
Taguchi method can be employed [2]. 
The matrix X is called the matrix experiments. Each 
line of X is composed of the value of the coefficient 
of aj in relations (1) or (2) at each experiment. For 
instance if the modelling function is linear, the line 
i of X has the form: 

1 X*i Xi2... Xij... Xik (3) 

where X*j is the value of the factor j during 
experiment number i, k is the number of 
coefficients aj which is equal for the linear case to 
the number of influent factors, n is the number of 
experiments done. In the same manner an ouput 
matrix Y is built. The generic component of this 
matrix Y*j is the measure of output data number j 
during experiment i. 
The coefficient a j can be put in a matrix A. The 
generic coefficient of this matrix aJj is the 
coefficient relating the ouput Yj to the input Xj. 
The matrix A is given by the relation: 

[a] = [Xt.X]"1.[Xt.Y] (4) 

where X1 is the transpose matrix of X. 
The last step consists of optimising the machine 
design. For that purpose, the polynomials  of 

equations (1) and (2) are used with a method of 
optimisation such as the simplex algorithm or 
steepest-descent method. 

PROCEDURE FOR PARAMETERS 
VARIATION 

To carry out the pk electromagnetical computations, 
an automatic procedure for parameters variation is 
necessary [6]. 
To this aim, the notion of library of structures has 
been defined. A reference file including the data 
needed by the field calculation and an automatic data 
transfert module are associated to each structure of 
the library. A reference file is created only once for 
each structure of the library, from the preprocessor 
of the field computation software used. After 
choosing the reference structure, the data transfert 
module defines automatically the file for the field 
calculation. Reading the reference file, the procedure 
builts on the same structure the file of the studied 
machine by computing only some geometrical 
points. The geometry , areas, materials, winding and 
boundaries adapted to the new dimensions of the 
machine are included in this new file. This 
automatic procedure for parameters variation is 
simple and has been integrated in the method of 
factorial experiments. A little module which gives 
automatically the new dimensions data with respect 
to the chosen factors and their levels of variation of 
the studied machine has been developped. An 
overview of the whole procedure is shown on the 
figure 1. 

Choice of the reference structure 

X Dimensions of the studied machine 
CXJ.XJ X„.) 

I 
Readthe reference file 
Buildthe file of the newmachine 

X 
Meshing and fields computation 

X 
Store the re suits (Yi,Y2, Yn) 

Fig. 1: Automatic procedure for parameters 
variations combined to factorial experiment method 
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APPLICATIONS 

This procedure is applied on a permanent magnet 
motor with polar pieces (Fig. 2). The aim of this 
study consists in the evaluation of the influence of 
the three following parameters: 

- the width of magnet (Xj), 
- the slot openning (X2), 
- the length of air gap (X3); 

on the values of rated torque and torque ripples. 

Fig. 2: One pole of the studied permanent magnet 
motor with polar pieces. 

The motor to be optimised during this project is 
described by the following data: 

torque : 121.3Nm inner diameter of the stator: 188   mm 

number of poles:12 current density .g A /mm2 

number of slots:72 torque ripples: 16 % 

The experiments planning is based on the three 
factors X] , X2 and X3 , each of those factors 
having three levels of variation (Table I) and permits 
to obtain a model of the characteristics from a 
second degree quadratic polynomial as follows: 

Y = a0 + cijXj + a2X2 + a3X3 + 
2 2 

2/JXJ +a22X2+a 33X3 + 
(5) 

a12X,X2 + a]3X,X3 + a23X2X3 

Polynomials are calculated by using the reduced 
values of these three factors: -1, 0, 1. 

For the at load torque computation, a 
magnetic field software EFCAD based on finite 
elements method is used [3]. This software 
computes whole of the electromagnetical 
characteristics such as the torque, the inductances 
[4]. This software takes into account the movement 
of the rotor and the saturation of magnetic material 
[5]. Any system of supply currents is available. In 

this study a supply by three phases AC currents has 
been considered. After magnetic field computations, 
the temporal evolution of the torque is analysed to 
obtain the average rated torque and the amplitudes of 
the torque ripples which are the ouput data. 
Table II gives the values of output Yt and Y2 
obtained after the 27 magnetic field computations. 

variable Xl x2 x3 

type width of slot ratio 

magnet openning air gap 

diameter / 

air gap 

minimum -1 5,2510mm 45% 225 

center 0 5,5274mm 50% 250 

maximum+1 5,8037mm 55% 275 

Table I: types and values of factors 

Y| Y2 Yi Y? Y, Y-, 
1 119,8 14,9 10 121,6 13,9 19 123,6 14,4 
2 120,6 15,7 11 122,0 14,8 20 123,9 15,7 
i 121,1 16,4 12 122,2 15,8 21 123,9 17,0 
4 119,0 16,9 13 121,0 16,0 22 123,5 16,5 
5 119,6 17,5 14 121,3 16,4 23 123,6 16,7 
b 119,9 17,9 15 121,3 16,5 24 123,6 17,2 
1 118,2 19,2 16 120,0 18,2 25 123,4 18,8 
8 118,5 20,0 17 120,5 18,8 26 123,3 188 
y 118,6 20,5 18 120,4 19,1 27 123,3 19,1 

Yi : rated torque (N m) 

Y2 : torque ripples (%) 

Table II magnetic fileds computation results 

After   defining   the   experiments   matrix,   the 
coefficients of the quadratic polynomials which 
describe the answers Yj and Y2 are calculated by 
relation (4). 
For the rated torque Yj , we obtain : 

Yj = 121,32 + 2,0549X, - 0,6671X2 + 0,2140X3 

+0,3417 x] -0,0211X2
2-0J294X2

3 (6) 

+0,3951X,X2 - 0,1945XjX3 - 0,1543X2X3 

And for the torque ripples, we obtain : 

Y2 = 16,35 - 0, 279Xj +1,878X2 + 0,587X3 

+0,767X] + 0,432Xl - 0,025x] 

-0,267X,X2 - 0,016X,X3 - 0, 299X2X3 

(V) 
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Figures 3 and 4 give an idea of the evolution of Yj 
and Y2 in function of X\, X2 and X3. Figure 3 
shows the variation of the rated torque (Yi) versus 
the slot opening (X2) and the air gap (X3) when the 
magnet width (Xj) is fixed. Figure 4 shows the 
variation of the torque ripples versus slot opening 
(X2) and magnet width (Xj) when the air gap (X3) 
is fixed. 

To verify the validity of the models, some results 
obtained by them are compared to those obtained 
from magnetic field analyses. These comparisons are 
reported on figure 5. For a better comparison, the 
values of the three factors Xj, X2, X3 are not the 
same than those used for the building of experiment 
matrix X. 

E 
Z 

slot opening 
air gap 

1120-120.5 B 120,5-121 □ 121-121,5 ■ 1213-122 ■ 122-122,5 

- rnagieäc field oomputaäaQ 

Fig 5 Comparison between the rated torque 
calculated by quadratic polynomial and the magnetic 
field computation 

Fig 3: Isovalues of the rated torque 
when the magnetwidth is fixed 

o    *o 
r 

magnet width 

~c c 
x 0- slot opening 

114-15 D 15-16 □ 16-17 □ 17-18 B 18-19 ■ 19-20 

It can be noticed that the results obtained 
from the polynomial are in good agrements with 
those obtained from magnetic field computations. 
Good agreements between the results obtained from 
the two calculations are also obtained for the ouput 
Y2- These comparisons show that the models are 
valid to predict the rated torque and the torque ripples 
for values of factors X] , X2 , X3 corresponding to 
their variation intervals. 

Once the validity of models is verified, 
several methods of optimisation can be applied to 
reach an optimum value of the choosen 
characteristics. In this paper the interesting point is 
fixed by a maximum rated torque or minimum 
torque ripples. The two polynomials which 
represent the evolution of the rated torque and the 
torque ripples are used to obtain the three values of 
X ] , X2 , X3 , according with the desired 
optimisation. The quasi-Newton algorithm has been 
applied to determine the results reported in the Table 
HI hereafter. 

Fig 4: Isovalues of the torque ripple 
when the air gap is fixed 
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magnet 

width 

(mm) 

slot 

openning% 

ratio air gap 

diameter / 

air gap 

optimum 

Nm 

Yi 5,5267 45 225 124,03 

Y2 5,8037 45 266,8 13,99% 

Table   III   :   Optimisation  results 

It can be noticed that the rated torque is slightly 
improved: 
the preliminary design has a rated torque equal to 
121.3 N.m and the optimised machine has a rated 
torque equal to 124.03 N.m. Same conclusions can 
be made for the torque ripples : the preliminary 
design gives torque ripples of about 16.4 % and the 
optimised machine 14 %. 
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CONCLUSION 

An approach to the problem of optimisation of 
electrical machine design by using a magnetic field 
computation code and the factorial experiments 
method has been developed and presented in this 
paper. 
The treatment of magnetic field results by factorial 
experiments allows us to etablish polynomials 
which link the design parameters to the 
electromagnetical characteristics. By means of those 
polynomials, it is possible to adjust the machine 
dimensions to match precise specifications. 
Furthermore, once these polynomials have been 
calculated, it is no more necessary to use numerical 
code to compute electromagnetical characteristics in 
function of the design parameters. It's better to use 
these polynomials for that. 
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Abstract: The calculation of forces and torques 
developed in electromechanical devices, and their 
variation with changes in position or excitation, is 
often what the designer is, ultimately, interested in. 
This paper addresses some of the problems 
associated with the force and torque calculations 
based on numerical field solutions for 2-D 
magnetostatic problems. The problem of 
calculating the cogging torque characteristic of a 
neodymium-iron-boron permanent-magnet motor is 
considered and the technique of torque 
measurement is described briefly. 

1. INTRODUCTION 

Forces developed in the air-gap of an 
electric machine can be resolved into two 
components: normal and tangential. The resultant 
of the tangential components provides the useful 
electromagnetic torque, and the resultant of the 
normal components has to be accommodated in the 
bearings. One of the sources of difficulty is that the 
size of the useful tangential force component is 
usually small compared with the radial force. Errors 
are more likely to occur when the force of interest 
is calculated in the presence of a much larger force 
field [1-2]. 

Forces can be obtained from numerical 
field solutions by evaluating the Maxwell stress 
tensor along a given integration path, by the virtual 

work concept, or by integration of I(dl x B). 

The latter is only applicable in systems containing 
current carrying conductors. In general, all these 
methods tend to give rise to errors in the forces that 
are greater than the errors in the field solution. 

When the problem solution is obtained in 
terms of the magnetic vector potential, flux 
densities are obtained from the curl operation 

B = VxA (1.1) 

This involves numerical differentiation and, 
therefore, any errors in the potential solution lead to 
larger errors in flux density values. This affect all 
subsequent post-processing operations. 

The Virtual Work Method 

The force acting on a movable part of a 
device may be evaluated by determining the 
variation of the magnetic stored energy of the entire 
device when a small displacement takes place. For 
the simple case where only one-dimensional 
movements are considered, the force is given by 

F = 
(Wj - W2) 

(1.2) 

dn 

where Wj and W2 represent the stored energies at 
the two distinct positions; d]2 is the positional 
displacement and F is the estimate to the force at 
the intermediate position {(d] + d2)l2). 

The Method of Maxwell Stress Tensor 

The basis of the method is the calculation 
of the force and torque directly from the field 
distribution. The force and torque are evaluated by 
integrating the force density over a contour 
surrounding the part of interest. For a known two- 
dimensional flux density distribution (B) and a 
contour C enclosing a body (or the movable part of 
a device), the total force and torque acting on the 
body are given by: 

f-l — B(B.n) —B2n\iC (1-3) 
Mo 2//0 

and 

T = r x F (1.4) 

where r is a vector function with its origin taken at 

the action point for the torque and «is the unit 
vector normal to the contour. 
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2. ACCURACY OF FORCE CALCULATIONS 

The finite element method produces a 
solution to the problem in terms of scalar or vector 
potentials. The potential distribution is only a 
numerical approximation to the true potential 
distribution, i.e. there is an inherent error in the 
potentials, commonly referred to as error in the 
approximation or shape function [3-4]. 

In conventional formulations, the forces 
and torques are directly related to magnetic flux 
densities, not to the vector or scalar potentials. Flux 
densities and magnetic field strengths are obtained 
from potential solutions by means of numerical 
differentiation. All the familiar sources of errors are 
present in numerical differentiation but errors in 
the approximation function are the most critical, 
even when small. This is because they are 
magnified by differentiation algorithms [5]. 
Therefore, errors in field distributions are, 
generally, greater than those of the corresponding 
potential distributions. This helps to explain why 
some formulations for predicting force and torque 
are more prone to inaccuracy problems. 

In the following, an attempt is made to 
enumerate and analyse the factors that affect the 
accuracy of force and torque calculations. To 
simplify the analysis, it is assumed that the 
discretization is appropriate to the problem (i.e. the 
finite elements are properly shaped to model the 
non-uniformity of the field). The factors that affect 
the accuracy of force and torque calculations may 
be summarized as follows: 

(i) For some algorithms, the quality of the 
force and torque prediction is dictated by the 
accuracy that can be achieved in determining the 
flux distribution. This sensitivity is evident in the 
Maxwell stress equations (1.3) and (1.4), but not so 
obviously from the virtual work equation (1.2). 
Here, it is worth remembering that the differences 
in stored energies are due to the different field 
configurations associated with the system 
displacement; 

(ii) Regions where a considerable amount 
of field energy is stored, like geometries with pole 
tips, are the most critical for the force and torque 
calculations. In the method of Maxwell stress they 
contribute the main component of the line integral 
in equation (1.3). Similarly, in some formulations 
of the virtual work method these regions also 
contribute the main component of the area integral 
used to calculate the magnetic stored energy. In 
other words, the main contribution to the net force 
and torque is due to stresses (or stored energy) in 
regions where pronounced concentration and non- 
uniformity of the field occur; these areas being 
where an accurate field solution is most difficult to 
obtain; 

(iii) Problems involving the computation 
of tangential force are often more difficult. This is 
because the tangential component of the force can 
be of a much smaller magnitude than the 
component in the normal direction [6]. This can be 
illustrated by considering a hypothetical system 
where the tangential force is small but non-zero. 
The diagram in figure 1(a) represents the "true" 
field distribution B at some point, while the 
approximate field distribution B' is shown in figure 
1(b). Although the error in the magnitude of B' is 
small, the incorrect field direction will result in 
wrong prediction of the tangential force. Therefore, 
slightly incorrect flux direction is a point of 
concern because this causes errors in force and 
torque values calculated by whatever method; 

B. B 

(b) 

Fig. 1: two flux distributions of similar magnitude. 

(iv) incorrect flux directions result from 
the fact the finite-element methods use some form 
of energy minimization to drive convergence. The 
homogeneous Neumann boundary conditions, for 
example, are not exactly satisfied and this affects, 
even locally, the flux direction [3]. Different flux 
directions imply different values of stored energies. 
Special algorithms are used to perform the 
numerical differentiation of the shape function and 
this feature is code-dependent. For example, some 
packages use the first of the two methods discussed 
by Binns et all [7] in which the continuity of the 
normal flux density is not imposed at the air-iron 
interface. 

3. PROBLEMS OF IMPLEMENTATION 

The above discussion identifies the factors 
which may affect the accuracy of force and torque 
obtained by whatever method. The following 
discussion is concerned with the aspects of each 
method that could result in difficulties in 
implementation and substantial numerical errors. 

The Virtual Work Method 

In contrast to the easy realization of its 
formulation, the implementation of the method 
requires a judicious choice of the positional 
displacement. This choice is problem-dependent 
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and has to take into consideration errors of 
conflicting nature. If, in an attempt to improve the 
accuracy of the approximate derivative expressed 
in equation (1.2), a small displacement is used, the 
energy values will be of similar magnitude and the 
subtraction (W,-W2) will be more sensitive to 
round-off error. On the other hand, a larger 
displacement may not be adequate to model the 
true non-linear characteristic that represents the 
variation of the system's energy with respect to 
position [8]. 

The method requires careful planning of 
the model and this must be followed by a critical 
examination of the results. In order to reduce 
discretization errors, one single finite element mesh 
must be used in all the solutions representing the 
sequence of the disturbed movable part [9]. In some 
cases the results might show that the variation of 
energy with respect to position is not consistent 
with the physical realization of the actual device, 
and a model re-definition may have to be done. 
From the observations made above it is evident that 
the method is computationally expensive. 

The Method of Maxwell Stress tensor 

metres and, therefore, they are very difficult to 
compute and measure accurately. 

Cogging torque is defined as the non- 
uniform torque that arises when only the excitation 
field is present (i.e. the armature current is absent). 
Cogging torque is a saliency effect that arises from 
the interaction between a salient pole on one 
member of the machine (rotor or stator) and the 
teeth on the other member. The interaction implies 
a magnetic field distribution which depends on the 
rotor position. In dc permanent-magnet motors, the 
interaction between the edges of the magnets and 
the teeth, situated on the opposite side of the air- 
gap, causes alternate cycles of restoring and anti- 
restoring torques as the rotor moves. 

The test machine uses radially oriented 
neodymium-iron-boron magnets to provide a four- 
pole rotor excitation. A cross-sectional drawing of 
the motor is shown in figure 2. The magnet arc 
spans 90 mechanical degrees and the stator has 24 
evenly spaced slots. The cogging torque 
characteristic is therefore periodic, with a period of 
15 mechanical degrees. 

Once the field distribution B in equation 
(1.3) is an approximation to the true one, i.e. there 
is an inherent error in the numerical field 
distribution, the independence of the results relative 
to the choice of the integration contour disappears; 
the definition of integration contours thus assumes 
a great importance. This aspect has to be 
considered very early, during the planning of the 
finite-element model, and adds complexity in the 
construction of the mesh. 

The energy minimization used by the 
finite-element method produces a numerical 
solution to the problem that is optimal for a given 
discretization. This scheme has no concern for 
variations in local energy accuracy. Consequently, 
the resulting fields are globally optimal, even 
though may possess considerable local error [10]. 
The forces and torques in equations (1.3) and (1.4) 
are related only to flux densities of the elements 
crossed by a given contour (Q. This makes evident 
why the method is so sensitive to mesh artifact and 
to the location of the integration contour [1]. 

4. FINITE ELEMENT MODEL AND 
TORQUE MEASUREMENT 

In order to investigate the numerical 
problems associated to the conventional methods, 
the problem of calculating cogging torque in a 
small permanent-magnet motor has been chosen. 
Cogging torque values in small permanent-magnet 
motors are typically in the range of millinewton- 

Magnet 
3mm Thick 

Fig. 2: Top: view of one-quarter of the test motor; 
Bottom: enlarged drawing of one tooth. 
Dimensions in millimetre. 
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The cogging torque is zero at any rest 
position where the edges of the magnets (interpolar 
regions) are radially aligned with the centerline of 
stator teeth. Such positions are stable equilibrium 
points for the rotor. Alignment of the interpolar 
regions with the centerline of the stator slots also 
implies symmetry, hence zero torque; but these 
positions are unstable equilibrium points for the 
rotor. The cogging torque is expected to be a 
smooth function of displacement in the absence of 
magnetic saturation. 

The cogging torque characteristics of the 
motor were determined experimentally by 
displacing the rotor shaft and measuring the torque 
induced. The rotor shaft was rotated, via a flexible 
coupling and a torque sensor, by a rotary table 
mounted so that its axis was collinear with the rotor 
shaft. The rotary table was driven by a stepping 
motor via a worm-wheel gearbox. The resolution of 
the stepping motor was 200 steps per revolution 
and the gearbox had a speed ratio of 90:1 giving an 
angular resolution for rotor displacement of 0.02 
degree. The estimated backlash in the gearbox was 
less than 0.1 degree. The torque was measured 
using a Lord six-component sensor. A data 
acquisition system capable of recording and 
processing up to 1000 measurements per second 
was used. The resolution of this system was 1.4 
millinewton-metre. The effect of friction was 
eliminated from the measured torque-position 
curves by moving the shaft in one direction a total 
of 30 degrees (two slot pitches) and than reversing 
direction. Torque readings were taken in both 
directions and the results were averaged. 

In order to investigate the accuracy 
obtainable by the conventional methods, a single 
pole pitch of the motor was modeled, subject to 
periodicity conditions. A commercially available 
two-dimensional magnetic field analysis package 
(MagNet Release 4) was used to solve the field 
problems. Initial investigations showed that 
magnetic saturation was not present anywhere in 
the machine. Therefore, in subsequent runs, all 
materials in the motor were considered to be 
magnetically linear, and a linear solver was 
utilized. 

Values of cogging torque were computed 
by both the virtual work and the Maxwell stress 
tensor method. Each torque characteristic is 
associated with a series of problems representing 
eleven rotor positions separated by 1.5 mechanical 
degree (10% of the period). In order to guard 
against mesh artifact in the results, a single finite- 
element mesh is used in all eleven runs belonging 
to one curve. Rotor movement is simulated by 
redefining material properties. 

To gain some idea how sensitive the 
methods  are  to  mesh  artifact  and  fineness  of 

discretization, solutions are obtained utilizing two 
different meshes. Results were firstly obtained on a 
reasonably fine mesh containing 952 nodes with 
1834 first-order elements. A second, coarser mesh 
was created by deletion of nodes in the clusters of 
elements close to the corners of stator teeth in 
figure 2. The number of elements was thereby 
reduced to 1546, the number of nodes to 808. The 
two meshes only differ in the air-gap region, 
because this is a critical region regarding energy 
transfer and it is where most significant field 
variations occur. 

5. NUMERICAL RESULTS 

Figure 3 shows zoomed views of the air- 
gap zone illustrating different node densities and 
corresponding flux plots. 

A/ 
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Fig. 3: Mesh detail in air-gap zone 
Top: finer mesh; 
Bottom: coarse mesh. 

The second mesh is a great deal coarser 
near the tooth tips, and flux density values in the air 
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gap and near tooth tips are expected to loose 
accuracy accordingly. While most of the flux lines 
trace roughly similar courses on the two meshes, 
tooth-tip flux density distributions differ. In the 
regions situated slightly to the right of the corners, 
flux lines do not impinge the laminations at right 
angles, despite the contrast between the 
permeability values, taken as 1:10000. This helps to 
explain why errors in the finite-element 
approximations are more accentuated in these 
regions. The low order polynomials used in the 
finite-element solutions are not adequate in 
approximating the sharp variations in potential 
values that occur in these regions. 

The virtual work method was used in its 
classical form, evaluating the stored total energy 
for successive rotor positions, then subtracting to 
give energy differences. The computed cogging 
torque characteristics are presented in figure 4, 
along with measurements. 
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Fig. 4: Cogging torque characteristics, virtual work 
method. 

The error in torque prediction is quantified 
in terms of the torque magnitude error and peak 
torque position error. Table I summarizes the errors 
for the two sets of data related to the virtual work 
method. 

Mesh Magnitude error, % Position error, % 
Coarse 99 5 
Finer 92 5 

Table I: Errors, virtual work method. 

The energy difference 5W between 
successive rotor positions are in the range 0.5-2.9 
mJ in a total stored energy W of about 5.4 Joules. 
Inspection of the results has shown that data 
associated with this method have produced curves 
with the right shape, correctly exhibiting zero 
average torque over the 15° period. Also, the 
positions associated with peak torque are close to 
those obtained in the measurements with errors of 
the order of 5%. Errors in peak-to-peak torque, 

however, are very high, exceeding 90%. Visibly, 
the small differences in stored energies affect the 
accuracy of the computed torque sufficiently to 
render the straightforward virtual work approach 
questionable for this class of problem. The 
sensitivity of the method in its classical form to 
numerical error is seen here to be very high. 

Torque computations based on the 
Maxwell stress method were performed using 
different integration contours, consisting of single 
arcs spanning one pole pitch. Stress integration 
over an arc of radius 27.0 mm resulted in more 
accurate values. In both meshes, this contour 
crosses the centre of the second layer of air-gap 
elements. Values for the cogging torques using this 
contour are presented in figure 5, along with the 
curve that represents measured values. Table II 
summarizes the errors for the two sets of data 
related to the Maxwell stress method. 
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Fig. 5: Cogging torque characteristics, Maxwell 
stress method. 

Mesh Magnitude error, % Position error, % 
Coarse 33 23 
Finer 27 13 

Table II: Errors, Maxwell stress method. 

None of the two curves related to the 
Maxwell stress method follow the curve of 
experimental results very closely. The errors in 
torque magnitude are significantly smaller than 
those obtained by the classical virtual work 
approach. Prediction of peak torque position, 
however, is even worse for the computations based 
on the Maxwell stress method. These results are not 
ideal, but this is to be expected when dealing with a 
geometry that contains sharp corners. The 
geometry contains 12 corners per pole pitch and 
this affects the level of accuracy of computed 
torques. 
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Further refinements of the mesh 
containing 952 nodes with 1834 elements (finer 
mesh) have not led to any significant improvement 
in results. Torque computations based on the virtual 
work method remain excessively high. The 
Maxwell stress method continues to predict peak 
torque at the wrong positions. 

6. CONCLUSIONS 

Calculation of forces and torques from 
numerical field solutions is a very difficult task. 
Usually, the solution is obtained in terms of 
potential distributions and, therefore, force is not 
the primary quantity in the computational analysis. 

Among the various methods for the 
evaluation of force and torque, the methods of 
virtual work and Maxwell stress tensor have been 
chosen for a detailed numerical investigation. 
These methods have been used to solve a 
notoriously difficult problem: prediction of cogging 
torque in a small permanent-magnet motor. 

Torque computations based on both 
methods have been compared to measured values. 
Numerical results have shown that, for both 
methods, the refinement of the finite-element mesh 
at an earlier stage has led to improvements in the 
results. For this particular problem, computations 
not reported in the paper and based on very coarse 
meshes with less than 700 nodes have produced 
oscillatory torque characteristics not consistent with 
the physical understanding of the problem. Mesh 
refinement at this level of discretization has, in fact, 
produced improvements in the results. 
Disappointingly, at the level of discretization of the 
finer mesh (952 nodes with 1834 elements), the 
accuracy of computed torques has not increased 
significantly as a result of an increase of mesh 
fineness. 

The virtual work method in its classical 
form fails to predict cogging torque accurately. 
This is mainly due to the energy values 
corresponding to the two adjacent positions being 
of very similar magnitude. 

The main problems of Maxwell stress 
method are related to its sensitivity to mesh artifact 
and to the location of the integration contour. 

The key to accurate torque computation is 
to avoid numerical differentiation entirely. In many 
problems involving numerical differentiation and 
integration, the order of differentiation and 
integration can be so rearranged that all integrations 
are done numerically, all differentiations 
analytically. Torque computations based on the 
technique of mean and difference potentials use the 
magnetic vector potential directly and can produce 
results which agree with measured values to within 
a few percent, within the limits of measurement 

accuracy and the approximations inherent in two- 
dimensional analysis. 
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Abstract — Mathematical theory is used to obtain 
convergence estimations for magnetostatic formulations 
using nodal and edge elements. Numerical results of two 
closed boundary problems that confirm the theory are 
presented. 

I. INTRODUCTION 

Much research has been done recently with nodal 
and edge elements in electromagnetic problems. 
However, it has not been discussed how an approximate 
solution, obtained by the finite element method, 
converges to the exact solution of the problem, when 
the mesh is successively refined. Recent papers [1, 2] 
show the characteristics of those elements and their 
convergence rates, when the field variable interpolated 
is the magnetic field H. In [3] and [4], convergence 
rates for regular meshes of nodal finite elements are 
presented, when the field variable interpolated is the 
magnetic vector potential A. In approximately closed 
boundary magnetostatic problems, the obtained results 
confirm the theoretical convergence rates [3,4]. 

Nevertheless, the authors do not know any 
convergence study that compares the edge and nodal 
elements when the magnetic vector potential A is being 
used as the field variable. 

In this paper, convergence rates for nodal and edge 
elements with one degree of freedom per edge (also 
named Nedelec elements or Mixed elements), applying 
regular meshes, are established. Convergence rates of 
closed boundary problems are also presented, applying 
nodal and Nedelec elements. 

discontinuity of the normal component. They can be 
applied in homogeneous or inhomogeneous domains, 
and they are better than the nodal elements in the 
treatment of the singularity of re-entrant corners [1,5]. 

The nodal elements in 3-D have 3 degrees of 
freedom per node, while the Nedelec elements have 1 
degree of freedom per edge. Some results seem to 
indicate that the Nedelec elements are more efficient 
computationally than the nodal elements [1]. If the 
following assumptions are made: (i) there exists a large 
mesh with hexahedral finite elements; (ii) the reduction 
of the number of unknowns due to the boundary 
conditions can be ignored; (iii) no gauge is applied in 
the problem; then it is found that the number of 
nonzero elements in the global matrix is equal to 236 
Ne for nodal elements, and 99 Ne for edge elements, 
where Ne is the number of elements in the mesh [6]. So, 
it seems that, in terms of memory occupation, edge 
elements are better than nodal elements. 

III. MATHEMATICAL FORMULATION 

In the computation of magnetostatic fields using the 
magnetic vector potential, the following equation is 
used: 

Vx(o VJCA ) = J, (1) 

where u is the magnetic reluctivity and J the current 
density in the problem domain Q. This equation is a 
partial differential equation of second order that has the 
weak form 

II. DESCRIPTION OF THE ELEMENTS 

Nodal elements represent vector functions with 
continuous components and show good results in 
homogeneous domains. Edge elements guarantee the 
continuity of the tangential components of these 
functions across the element's interfaces, allowing the 

D(A,M>) = f(J,M>)        VweV, (2) 

where D and f are symmetric bilinear forms that consist 
of integrals over Q, and V is the space of admissible 
functions. This weak form has only derivatives of first 
order. 
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IV. ERROR ESTIMATES AND CONVERGENCE RATES 

A. Nodal Elements 

Let Ah be an approximate solution found by the 
finite element method to the magnetic vector potential, 
and A the exact solution of the problem. Let e = A - Ah 

be the error between A and Ah, then we define the 
following Sobolev norms: 

HHm(n) J xH dx 
a <x=o 

1/2 

(3) 

and 

lAllH*+1(n) fxH 
-11/2 

dx 
n a=0 

(4) 

where k is the order of the polynomials used in the local 
basic  functions, m the order of derivatives that appear 

in (2), ea and Aa all the derivatives of order a of e 

and A, with a = (aj,a2,...,a„) eZ" (Set of all 
ordered «-tuples of non-negative integers), and 

|a| = ai +a2+...+ a„. Considering that the finite 

element mesh is regular, and using the Aubin-Nitsche 
theorem [8, 9], the following estimate for the error norm 
is obtained: 

NlHs(n) -co/7^lAlHt+1(n)' (5) 

for 0 < s < m and (i = min [k+l-s, 2(k+l-m)]. h is the 
parameter of the mesh, defined by the diameter of the 
smallest circle that contains the largest element of the 
mesh, and C0 is a constant independent of A and h. 

If our interest is in  |H|Hofm > an(^ we knowtnat 

lAilH*+1(fi) 

c, =c," 

the convergence rate decreases with the derivatives [8], 

the convergence rate for B is of order 0(hk). 

B. Edge Elements 

Let T be the boundary of the problem, r| the unit 
normal vector in T, then we can define the following 
Hubert spaces: 

H(curl,Q) = JA e (L2p)f:VxA e (L2pjf\   (7) 

and 

H0(curl,Q)= -(A € H(curl,Q): Axri = 0 in r}.     (8) 

Let Pk be the polynomial space of degree < k and 

Pk the homogeneous polynomial space of degree k. 
Then we can also define the space 

Sk = {p(x)e(p(x))f:p(x).x = o}, 

is constant, we can set 

1 = Co||A||H*+i(n), obtaining 

(6) 

But, m=\, then u = k +1 since 2k > (k +1). In this way, 

the convergence rate is of order 0(h ) for the 
magnetic vector potential A. As B, the magnetic flux 
density, is computed from A by building the curl, and 

(9) 

where p(x).x is the inner product between p(x) and 

x, that is, p(x) and x are orthogonal. Let UA be the 

space of approximate function, A/, eUÄ, and the 

projection operator nhAe\Jh, so that the following 
inner products are zero: 

(Vx(A-7i,,A),VxV)=0, VVeU,, (10) 

and 

(A-7rAA,Vp(x))=0, Vp(x)eSk.     (11) 

Then, we have the following theorem [7]: 

Consider a regular mesh and assume that 

A eH0(curl,Q) and 7t/,A is defined as above. Then 

(i)if Ae(tik+l(Q)j,then 

|A-^A|Ho(n)<C^||A||H*+I(n). (12) 

(ii) if VxA e(Hk(n)i, and 7rAAis well defined as 

above, then 

|Vx(A-7üAA)||Ho(Q) SCA*||VxA|H*(n).        (13) 
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Let Af,= 71/,A and B/, = VxA/,. Then we notice 
that the convergence rates for A and B are of order 

0(hk). 

V. RESULTS 

Using 3-D electromagnetic field computation 
programs developed by our research groups, the error 
estimates for the following problems have been 
determined: 

(i) Infinite square coaxial nonmagnetic cable in air. 
(ii) Infinite rectangular magnetic busbar in air. 

The problem (i) was chosen because it behaves as a 
closed boundary problem (null magnetic field in the 
proximity of the cable), when the current that flows in 
the outward conductor is chosen to cancel the magnetic 
field in the proximity of the cable, created by the 
current that flows in the inner conductor. In this way, it 
is possible to represent the boundary conditions of the 
problem in exact manner, and one avoids that the 
boundary condition errors could introduce errors in the 
computation of the convergence rates. 

The problem (ii) was chosen because it has two 
permeabilities and behaves as a closed boundary 
problem when the permeability of the busbar is much 
greater than the air permeability. 

In the following section all those problems are 
presented with their convergence rates. The analytic 
solutions are found in [10]. 

Infinite Square Coaxial Nonmagnetic Cable in Air 

A cable with an inner conductor of 10 cm x 10 cm, 
and an outward conductor of 50 cm x 50 cm with a 
thickness of 10 cm was considered, as shown in Fig. 1. 
A current of 10,000 A was assumed in both conductors. 
The current flows axially in opposite senses in the inner 
and in the outer conductors. The boundary condition 
A = 0 was considered to be 10 cm outside of outward 
conductor. 

Let us substitute B in (5) and (6). Then, L2 error for 
Bis 

L2Berr = J(B-B/,)2 dx 
n 

1/2 

(14) 

The results obtained for this error norm in the nodal 
and Nedelec Elements, when the finite element mesh is 
refined (-log h is increased), are shown in Fig. 2 and 3 
respectively. 

Using linear regression, we have found a 
convergence rate of u = 0,961 for the nodal elements 
[4] and u = 0,959 for the edge elements. As these 
computations were executed with interpolating 
polynomials of 1st degree (k = 1), the rates are near 1, 
and confirm the theory. 

Infinite Rectangular Magnetic Busbar 

it was considered a busbar of 10 cm x 20 cm with 
magnetic permeability ur = 1000. The current of 400 A 
flows axially in the busbar, and the boundary condition 
A = 0 was assumed at a distance of 15 cm from the 
busbar center, as shown in Fig. 4. 

The computation of the values of L2Berr is shown 
in Figs. 5 and 6. Using also linear regressions, we 
obtained a convergence rate of (a = 0.991 [3] for the 
nodal elements and u = 0,987 for the edge elements. 

10 cm 
I 1 

(a) Total View 

Uutward Conductor 

11 
Boundary 
Condition 
^ A = 0 

r -»* 

(b) Plant View 

Fig. 1 - View of Coaxial Cable 
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Fig. 2 - Results of Coaxial Cable with Nodal elements 
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Fig. 3 - Results of Coaxial Cable with Edge Elements 
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Fig. 5 - Results for Magnetic Busbar with Nodal Elements 

0.6 

-r     0.4 + 
III m     0.2 + 
CM 

Bl 
o 

-0.2°+ 

-0.4-L 

1.2 1.4 1.6 

-Logh 

Fig. 6 - Results for Magnetic Busbar with Edge Elements 

VI. CONCLUSIONS 

The convergence rates for magnetic vector potential 
formulations using nodal and edge finite elements with 
one degree of freedom per edge (Nedelec Elements) and 
regular meshes were presented. 

Theoretically, when nodal elements are used, the 
convergence rates are of order 0(h ) for the magnetic 
vector potential A and 0(h) for the magnetic flux 
density B. When edge elements are used, the 
convergence rate is of order 0(h ) for A and B. 

Finally, some computational examples that confirm 
the theoretical results are presented. 
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Abstract—This paper presents the finite element 
simulations of the out-of-phase synchronization of a 
synchronous machine with an external electric system. 
Two cases were analysed regarding to the phase angle: 
120° and 180°. Computed results are analysed and 
compared to analytical values. 

INTRODUCTION 

A very current and important stress for a 
synchronous machine arises during an out-of-phase 
synchronization. 

An out-of-phase synchronization is a faulty three 
phase operation that occurs when the generator is 
switched to the system and the equality of voltage 
and/or frequency and/or phase are not respected. 

In this work we assume that the voltage is equal for 
the system and the generator, and the phase angle is 
different. 

Fig.l shows the representation of this assumption. 

A,B,C: Generator 
A',B',C: System 
X: angle between phases 

Fig. 1: Angle lag between generator and system voltages 

In such condition two important cases arise: 

1. out-of-phase   synchronization   with   180°   of 
angular lag; 

2. out-of-phase   synchronization   with   120°   of 
angular lag. 

In the first case the armature currents reach the 
maximum value whereas in the second case the 
electromagnetic torque reaches its maximum value. 

The analytical study of those cases is done by the 
Park theory [1]. 

Nevertheless, the equations development is very 
fastidious and some simplifying hypothesis must be 
taken in order to obtain useful expressions. 

Nowadays, the availability of modern numerical 
programs allows a closer investigation of the magnetic 
behaviour in the synchronous machine. 

Hence a more accurate solution can be reached by 
computing the flux distributions in detail avoiding 
simplifications in modelling. 

This paper presents the linear, two-dimensional , 
time-stepping finite element simulations of the out-of- 
phase synchronization in the two cases previously 
mentioned. 

These simulations considered the rotor movement 
by means of the air-band technique [5] and the external 
system by coupling electric circuit equations to the 
Finite Element Method (FEM) [2], [3], [4]. 

Computed results are compared to analytical ones. 

OUT-OF-PHASE SYNCHRONIZATION - THEORETICAL 
OVERVIEW 

Consider a unloaded synchronous generator. The 
armature voltages can be written as: 

Va0 = e.sin(a)t+0Q) 

Vb0 = e.sin at+ &0 
2n 

An 

(1) 

VcO = e.sirla)t+0o     3 
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As stated before only the phase equality is not Eliminating AId and AIq in equations (4) we reach 
respected the following system: 

Thus the system voltages are expressed as: 

Val = e.sin(cot+ 0Q - X) 

( In 
Vhri = e.siii at+0c\-X —— 

An 

\      -     'T Vcn = e.sin cot + d^-X- 

(2) 
p 

wqo 
.  P . 

= 
V 
p+ 

Ld(p). 
-co 

CO 
{P+ Lq(p), 

Md 

(6) 

where X is the phase angle difference at the switching 
instant. 

Solving (6) we obtain: 

obtain: 
Applying the Park transformation to (1) and (2) we     A<Pd(P)      /  2 2\ 

• P\P  +^ap + w j 

Vd0 = 0 

rqo=e 

Vdi = -e. sinX 

Vql = e.cos/l 

-AVd0.\p + 
Ld(p). 

+ AVq0.co 

(7) 
1 

The voltage variation on the machine's terminal is: P\P  +2ap + 6) j 

APrfo = ^d\ ~Vdo = -e-sinX = -2e.sin—.cos: 

i X 
AVqo = yq\ -Vqo =e.cosX-e = -2e.sin  — 

(3) 

-AV^.co-AV, 'do q0 P + 
Lq(p). 

where: — = Ta is the armature time-constant 
a 

Using the operational notation we have: 

AV, d0 -pA0d-a.A0q-ra.AId 

AK q0 
= ~PA0q + *>■ -ra-AIq 

with: 

A4>d = Ld(p).AId 

A<j>q = Lq(p).AIq 

Ld(p)   :    D-axis operational inductance 

Lq(p)   '■    Q-axis operational inductance 

(4) 

(5) 

Considering that the out-of-phase operation is 
harmful in the first instants we can neglect all 
resistances. 

So, introducing (7) in equation (5) we obtain the 
currents variations: 

*d(P) = 
AV, d0 

Ld(p)(p2+2c4> + (02) 

0.AV, q0 

pLd(p)(p2+2ap+co2) 

(8) 

AIa(p) = 
AV, d0 

pLq(p{p2+2ap + o>2) 

co.AV, q0 

Lq(piKp
2+2ap + co2) 
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ti n 

Moreover, assuming that X , = X   we obtain in the 

time-domain terms [1]: 

ld(t) = Md(t) = -£r.sm 
(d X,        2 

r   x) X 
sin 6)t + — -sin— 

L   v      2;       2J 

(9) 

Iq(t)=AIq(t)=—£-.sin- 
xd        z 

Al A 
cos a>t+—\-cos— 

\       2J        2 

and:   Z</:    D-axis subtransient reactance 

And the phase-A current can be written, in per unit 
values, as: 

Ia(t) = -^r-sin-\ sin\ at- 60 -^ \-sin[ 0( (10) 

The torque  equation  is  obtained  by using the 
following equation: 

Ce =—pr-a\<t>d-Iq -tq-h] 
xd 

In our case we have in per unit values: 

(ID 

C. 
xdl 

sinA-2sin—.cos\(Dt + — (12) 

It can be noted from (10) that the maximum current 
occurs when: 

Thus: 

X = K, &0 = 0, at = n 

lamax « 
Xd 

FINITE ELEMENT METHOD 

Although analytical solutions are known for the out- 
of-phase synchronization as presented in the previous 
section numerical methods have the advantage of 
providing solutions less affected by simplifications 
including results on local quantities. 

This section presents the FEM for time-dependent 
problems. 

In electromagnetic time-dependent problems the 
skin effect occurs in solid conductors. 

Thus the partial differential equations that describe 
the electromagnetic phenomenon are: 

for wound conductors: 

rot(v.rotA) =j (15) 

for solid conductors: 

rot(v.ro^) + CT( dA/dt + gradV) = 0   (16) 

Applying the FEM to these equations the following 
systems, in commonly used notations, are reached [2]: 

wound conductors: 

[S\.[A] = [C].[I\ (17) 

solid conductors: 

[S\.[A]+[G\.d[AVdt.[C'].[AV\ (18) 

with: 

SUj = l. jjß v.gradaj.gradajdn 

(13) 

Gij=liin<™i-aJdQ 

C'f = 1.11^0.a ,dn 

Analogously, from (12) we have for the maximum 
torque: 

Ct = 

rNs.l^ 

X = ±^ 
3 

K sk ) ■ft* MO 

and: 

C0 
3yf3.e2 

2X\ 
(14) 

a„ ctj :interpolation functions 
Ns       : number of turns for wound conductors 
Sk       : wound conductors' region surface 
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It is noted that wound conductors are supplied by 
current sources whereas the most electromechanical 
devices are supplied by voltage sources. 

Therefore, a technique, as shown in the following 
section, is necessary to take into account the two types 
of conductors and to allow the voltage supply in wound 
conductors. 

Electric Circuits Coupling 

A recently developed technique to model wound and 
solid conductors and the voltage supply is the Electric 
Circuits Coupling which is based on the association of 
Kirchhoff equations in the FEM formulations [2]. 

Furthermore, it allows to take into account the 
external components such as inductances and 
resistances in the analysis. 

Fig.2. shows a simplified circuit coupled with a 
Finite Element analysis. 

Finite Element: 
Solid conductor 

or 
wound conductor 

Fig.2. Electric Circuit Coupling 

According to [2] the circuit coupling provides the 
following system: 

for wound conductors: 

[A] : vector of magnetic potentials 
[Z] :matrix of external resistances 
\T\ :matrix of external and wound conductors 

resistances 
[L] :matrix of external inductances 
[/)'], [D] matrices of currents directions 
[I] : vector of currents 
[R] matrix of solid conductors resistances 
\AV\ : vector of solid conductors drop voltages 

Moving-Air-Band Technique 

The moving-air-band technique was implemented in 
order to consider the rotor movement in the FEM 
simulation [5]. 

It comprises a surface located in the air-gap with 
only one layer of elements. 

The main advantage of this technique is the fact that 
the finite element meshes in the stator and rotor remain 
unaltered after the movement. 

Remeshing is necessary only in the band region as 
canbeseeninFig.3. 

a: before 

[S].[A] = [C].[I\ 
[E] = [?].[I\ + [L).d[I\/dt + [D'].[C^.d[A]ldt 

for solid conductors: 

(19) 
(20) 

[S].[A]+ [G]. 8[A]/dt - [C'].[AV] =0 (21) 
[E] = [Z\.[I\ + [L].d[I\/dt + [D].[AV\ (22) 
[AV\ = [R].[I\ + [R].[C]\ 8[A]/dt (23) 

where: b: after 

[E\ : vector of voltage sources Fig.3. Moving-air-band mesh before and after a rotation of 5° 
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NUMERICAL SIMULATION 

The numerical simulations were carried out on a 
3-phase, 3 KVA, 50 Hz, 4 salient-pole generator, as 
shown in Fig.4. 

The stator has 54 slots, 12 conductors per slot and a 
2-tier, double-layer, star-connected winding. 

The rotor, which is completely laminated, has 4-coil 
main excitation winding and a concentric wound 
damper winding fitted in 24 slots with 74 conductors 
per slot. 

Figure 5 shows a magnified view of damper slots. 
Due to symmetries in the study domain a half 

geometry was used in numerical analysis. 
This allowed to reduce the matrices dimensions and 

the number of electric circuits. 
The external system, the switches and the windings 

connections were taken into account in the simulations 
by using the electric circuit shown in Fig.6. 

The software package used was FLUX2D [6]. 

machine system 

Fig.4. Machine geometry with moving-air-band technique 

Fig.6. Electric circuit 

The first step of the simulation consisted in reaching 
the generator steady-state at unload condition. 

It was done by a time-stepping simulation feeding 
the field winding with a DC voltage source and rotating 
the rotor at 1500 rpm. 

Afterwards, switching with the appropriate angle 
the out-of-phase synchronization between the generator 
and the system was accomplished. 

In this work the time-step was 0.5 ms and 
synchronizing angles were chosen as X = 180° and X = 
120°. 

RESULTS 

Fig.7. shows the phase-A current and the torque 
waveforms for the out-of-phase synchronizations at 
120° and 180°. 

15 15.05       .15.1,      15.15 
üme(s) 

a: Current 

15.2 

Fig.5. Magnified view of damper slots 

15 15.05     ,.15.1,       15.15        15.2 
timeCs) 

b: Torque 
Fig.7. Phase-A current and torque for X=120°and^=180° 
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Table I presents the comparison between computed 
and analytical results of maxima values of current and 
torque. 

 Table I: Maxima values of current and torque  

Parameter 
Method 

'max (A) 
A.=180° 

CmaxCN"1) 
X=120° 

Analytical 40,3 -8,07 

Simulation 35,5 -10,20 

We note from Table I that for ^.=180° the analytical 
value for the current is greater than the simulated 
result. 

This difference can be explained by the fact that all 
resistances in the analytical expressions were neglected. 

Indeed, neglecting the resistances the decrements in 
the current waveform are not taken into account. 

Furthermore, the absence of the resistances causes 
the non-consideration of the homopolar torque which 
can justify the difference between analytical and 
numerical results for the torque at A,=120°. 

The total cpu time was 84.104 s and the number of 
unknowns was 5383. 

CONCLUSIONS 

Out-of-phase synchronizations between a 
synchronous generator and an external system were 
accomplished by finite element simulations. 

Numerical results agree with theory and have shown 
that maximum current and maximum torque occur at 
^=180° and A,=120°, respectively. 

Moreover, unlike analytical method, numerical 
simulations allow the out-of-phase synchronization 
study without neglecting the resistances. 

Hence, complex phenomena such as the homopolar 
torque are taken into account and more complete results 
are reached. 
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Abstract - The forces acting on the stator end windings of a 
hydrogenerator at steady state operating conditions, as well as the 
end-winding leakage inductance, are calculated using a 3D finite- 
element package. A more realistic representation for the 
geometry of the windings and boundaries is considered. The 
effects of different representations for the stator core end surface 
are outlined. The computed values of the inductance from time- 
harmonic and static simulations are presented and compared 
with classical analytical methods. 

I. INTRODUCTION 

The electromagnetic field theory has become increasingly 
important in many engineering problems. An accurate 
knowledge of the magnetic field distribution in electric 
machines is of great importance in the design step. For 
instance, the estimation of the end-winding inductance, end- 
induced stray losses, and forces requires the knowledge of the 
leakage field of the stator end winding. Therefore, many 
efforts have been made to satisfactory predict the end leakage 
of a.c. machines. This has been possible in spite of the 
difficulties encountered, such as the 3D field distribution, the 
complicated shape of windings and boundaries, the different 
permeabilities, and the reaction of eddy currents induced in 
the boundary surfaces. 

The limitations of analytical methods have led to the 
development of improved field calculations using numerical 
methods. Unfortunately, the available numerical methods [1]- 
[2] have the disadvantage that the field calculation is only 
quasi-three-dimensional, using axisymmetrical geometries. 
Therefore, all structural inhomogeneities in the peripheral 
direction are considered only approximately, as is the case in 
the assumption of a sinusoidal circumferential distribution for 
the currents as sources of magnetic field and its limitation to 
just the fundamental wave [2]. Of course, the neglected field 
harmonics decay quickly, but their greatest effect occurs in the 
vicinity of the conductor, just where the force is produced. 
Thus, a solution for this problem can only be achieved 

V. C. Silva, e-mail viviane@pea.usp.br, fax: +55 (0)11 818 5719. 
A. Foggia, fax: +33 (0)4 76 82 63 00. 

through a 3D finite-element computation. 
In this work, a method is presented so as to determine 

steady state forces on the stator end windings of a 
hydrogenerator based on a fully three-dimensional field 
solution. The calculations have been carried out using a three- 
dimensional finite-element package, in which the shape and 
finite cross section of the windings are both treated. In 
addition, the model allows for eddy current effects. These 
eddy currents appear mainly in the stator core flange and 
stator end laminations. 

The end winding region of a 300-MVA 16.5-kV alternator 
with fifty-two rotor saliencies is used [3]. The stator winding 
consists of two-layer short-pitched diamond-shaped coils. A 
three-dimensional view of the end region of the machine is 
shown in Fig. 1, where only one pole pitch is represented 
because of symmetry. 

Fig. 1. Domain of study: one pole of the machine with relevant boundaries. 

II. BASIC ASSUMPTIONS 

A. Computation of Inductance 

Three simulations were carried out for determining the 
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flux distribution. In the first two, the problem is treated as a 
magnetodynamic one with sinusoidal-time variation for the 
variables. Two different approaches are used to represent the 
stator end laminations. In the third simulation the problem is 
treated as a magnetostatic one, where no eddy-current effect is 
considered. 

The assumptions made are as follows: a) the windings 
have a 3-phase current feeding; b) the calculation of 
inductance is performed for the instant at which phase A is 
carrying the maximum current; c) only one pole pitch is 
represented in the analysis, due to the periodicity of the 
domain; d) all materials are assumed to be linear, isotropic 
and homogeneous; e) the source current-density field is 
continuous and uniformly distributed over the area of the 
cross section of a coil; f) the rotor has not been represented in 
the model, which is an acceptable approach in large salient- 
pole generators at steady-state operating condition, thanks to 
the large air-gap characteristic of this kind of machine. 

B. Computation of Forces 

Several simulations were carried out to determine the flux 
distribution in different operating conditions. The problem is 
treated as a magnetodynamic one with sinusoidal time 
variation for the variables. Two different approaches are used 
for representing the stator end laminations. 

The assumptions made are the same as for the 
computation of inductance, except for the rotor 
representation. It has to be taken into account in this case, and 
that is achieved through a suitable boundary condition 
prescribed on its surface. 

III. 3D FORMULATIONS AND BOUNDARY CONDITIONS 

In contrast to the 2D finite-element analysis of 
electromagnetic fields, which uses only the magnetic vector 
potential (MVP) as state variable, various formulations are 
available in 3D [4]. 

Usually, the use of the magnetic scalar potential (MSP), 
both total and reduced, as state variable is encouraged as 
much as possible, since it produces only one unknown per 
node in the finite-element mesh. The presence of source 
currents can be dealt with by using the reduced MSP, when 
the contribution of the source currents is computed by the 
Biot-Savart law. Nevertheless, when current-carrying 
conductors have complicated shapes, the application of the 
Biot-Savart law can be very troublesome and time- 
consuming. Furthermore, in the vicinity of the conductors, 
which is the region of interest, the precision can be very poor. 
These problems have been tackled by using the MVP in 
regions with source currents. 

Hence, the field solution has been first performed in the 
complex domain, i.e., the quantities vary sinusoidally in time, 
and the formulations used are as follows [3]: a) MVP in 

current-carrying regions and holes of multiple-connected 
regions, and b) total MSP in current-free regions. Thus, in the 
stator end-winding region, which is limited by an enclosing 
box, the MVP is used. In the surrounding empty space the 
total MSP is employed. The relevant boundaries are shown in 
Fig. 1. 

The boundary conditions used are as follows: a) 
antiperiodic boundary conditions on the two radial planes of 
symmetry of the pole pitch; b) surface impedance boundary 
condition on the surface of the stator core flange; c) tangential 
field on the outer boundary surfaces; d) the stator end 
lamination is firstly represented as a surface impedance 
boundary, which enables eddy-current effects to be allowed 
for, and then as a boundary where the field is assumed 
tangential; e) when the scalar and vector potentials are used in 
different parts of the domain, a condition of A.n = 0 (zero 
normal component of the vector potential) is enforced on the 
interface of the two formulations to ensure the uniqueness of 
the vector potential solution [4]. 

The rotor is represented as a Dirichlet boundary 
condition, imposed on its surface, on the total MSP. This 
boundary condition represents the rotor magnetomotive force 
(m.m.f.) and depends on the operating condition. Thus, on the 
rotor surface a suitable value for the magnetic scalar potential, 
<j), is set. This value is given by: 

♦ = ♦,/ i(a>t-pe-y) 
0) 

which represents a travelling field (with the fundamental 
harmonic component only). <|>0 is the peak value of the 
fundamental m.m.f., p is the number of pole pairs, 0 is the 
circumferential displacement and vy is a phase angle which 
depends on the load condition and power factor (p.f.). These 
quantities can be calculated either through a 2D finite-element 
field solution or by the classical phasor diagram. The latter 
method was used in this work. 

IV. WINDING CURRENT DISTRIBUTION 

The attribution of source currents in the end windings is 
by no means straightforward as is the case in two-dimensional 
problems, since the shape of the coils is complicated and 
three-dimensional. An intermediate step is therefore 
necessary; in this work a current-density field computation 
has been performed to determine the current density 
distribution in the stator conductors [5]. The equation of the 
electric conduction [6], 

div (a gradV) = 0, (2) 

where V is the electric scalar potential and a is the 
conductivity, was solved in the source-current regions. The 
current density, /, is then calculated by: 
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J = -a grad V (3) 

Fig. 2 shows the current-density vectors in the stator end 
conductors calculated in this way. 

Fig. 2. Vectors of current density calculated by the current field simulation 

V. FIELD SOLUTION 

The domain was meshed in first-order tetrahedra. The 3D 
finite-element simulation provides the potential values and 
hence the magnetic field at every node of the finite-element 
mesh. Figs. 3 and 4 illustrate the field distribution in the end 
zone. The arrows represent flux density vectors plotted on the 
plane indicated. 

Fig. 3.   Flux density vectors in the end zone with stator-winding feeding 
only 

VI. END LEAKAGE INDUCTANCE EVALUATION 

The end leakage inductance can be evaluated from the 
considerations of stored energy [6]: 

/  , 

ss*z 

Fig. 4. Flux density vectors in the end zone; full load at 0.95 lagging power 
factor. 

L = l.\\\[A-j\dV 
1      i/ 

(4) 

From (4), it is only necessary to compute the volume 
integral of the scalar product of the vector potential and the 
current density in order to calculate the inductance. The 
integration must be carried out in the current-carrying regions. 

VII. RESULTS FOR THE END INDUCTANCE COMPUTATION 

From the discrete values of the potentials, the three- 
dimensional flux distribution in the end zone of a 300-MVA, 
52-pole, three-phase alternator has been found through three 
different simulations and the leakage reactance is calculated. 
The results are compared with the value obtained from an 
empirical method [8]. These results are given in Table I. 

TABLE I 
NUMERICAL vs EMPIRICAL VALUES OF INDUCTANCE 

3D field solution 

Simulation case 
Stator boundary 

condition 
Inductance (uH) 

1 
(magnetodynamic) 

(magnetodynamic) 

(magnetostatic) 

Surface 
Impedance 

Tangential 
field 

Tangential 
field 

38.74 

38.56 

39.55 

Analytical formula [8] 30.84 
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It can be noticed that the numerical values correlate well 
with the value calculated by the established empirical 
formula, considering the complexity of the phenomenon and 
the absence of an accurate theoretical expression. Moreover, 
any effect due to currents induced in conducting parts, such as 
the core flange and end laminations, seems to be insignificant 
on the inductance calculation, since these parts are at 
relatively large distance from the current-carrying conductors 
in the given example. 

VIII. FORCE CALCULATION 

The basic formula for calculating the force acting on a 
current-carrying conductor in a magnetic field has a very 
simple form in vectorial notation. The force density F (in N/ 
m3) for the conductor is given by the vector product of the 
local current density J and the magnetic flux density B: 

F = JxB (5) 

Figs. 5, 6 and 7 show the force density vectors calculated 
for one of the conductors at the condition of rated output and 
0.95 lagging p.f. 

Fig. 5. Force density vectors in one conductor (projection on plane xOy). 

Fig. 6. Force density vectors: plane xOz. 

IX. COMPARISON OF FORCES FOR DIFFERENT TYPES OF OPERATING 
CONDITIONS AND STATOR CORE REPRESENTATION 

A useful way to present the forces is to calculate the total 
integrated value of the force over one slot pitch [1]. This is the 
total force from the core to the end of the end winding and for 
one slot pitch of circumferential distance. The integration was 
performed for both inner and outer layers of the end winding. 
The instant of time represented is that when phase A has the 
maximum current. 

Fig. 7. Force density vectors: plane yOz 

Figs. 8(a), (b) and (c) show the total force (radial, 
peripheral and axial components, respectively) plotted over 
one pole of the machine, for both inner and outer layers, at 
rated output and 0.95 lagging p.f. 

Figs. 9(a), (b) and (c) present the total force components 
(for the outer layer only) at three load conditions: steady-state 
short-circuit, rated output with 0.95 lagging p.f, and 0.95 
leading p.f. 

Finally, Figs. 10(a) to (c) show the resulting forces in two 
different situations: (i) considering induced currents in the 
stator core end laminations by imposing an impedance 
boundary condition at the stator core end surface, and (ii) 
neglecting their effects by considering the end surface as one 
where the field is tangential. 

The resulting system of equations had about 80.000 
unknowns and the field solution took about six hours on a 
HP9000 series 700 workstation. 

It is not possible to validate the force calculation directly. 
An indirect verification could be made by measuring the flux 
densities, but these measurements were not available at the 
time of producing this work. However, a qualitative check can 
be made by noticing that, as previously reported [l]-[2], the 
radial component of the force is the highest one, and the 
forces at rated output and 0.95 leading p.f. are slightly higher 
than those at 0.95 lagging p.f. Also, a reversal in the direction 
of the peripheral force between phase belts can be observed, 
as illustrated by Fig. 11. 

It can be noticed from Figs. 10(a), (b) and (c) that there is 
virtually no sensible difference in the resulting peripheral and 
axial forces and little effect in the radial force when changing 
the stator outer lamination representation from a tangential 
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field to a surface impedance boundary. Thus, the usual 
assumption of an infinitely permeable surface for the stator 
core end can be adopted. 

-inner layer - - ^ -  outer layer 
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Fig. 8 . Components of total force per slot pitch at rated output and 0.95 
lagging power factor for inner and outer layers; (a) radial, (b) peripheral, 
and (c) axial components. 
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Fig. 9. Components of total force per slot pitch at various operating 
conditions (outer layer); (a) radial, (b) peripheral and, (c) axial compo- 
nents. 
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Fig. 10 . Components of total force per slot pitch for distinct stator core end 
representations;   (a) radial, (b) peripheral, and (c) axial components. 

Fig. 11.   Force density vectors between phase belts. 

X. CONCLUSIONS 

A method has been presented to determine the flux 
distribution in the end region of a large synchronous machine 
and to calculate the end-winding electromagnetic forces at 
steady state conditions, as well as to compute the stator end- 
winding leakage inductance with reasonable accuracy. It uses 
a fully three-dimensional field solution. 

The results for the calculated inductance, when compared 
with an available empirical formula, present an acceptable 
correlation. For the forces, the results seem to be also 
acceptable, when compared with earlier works, albeit no 
measurements were available for validating this method 
quantitatively. 

The traditional design calculations do not adequately take 
account of all the complex factors involved in the end region, 
such as the complex geometry and boundaries, while the 
approach presented here can handle them properly. 

The results show that eddy currents induced in stator end 
laminations have little effect on the end-winding forces, at 
least in the example treated here. This may be due to the 
relatively large distance between these eddy-current surfaces 
and the source-current regions. 

The magnetodynamic simulation, however, cannot be 
used to predict the forces in transient conditions. In this case, 
a time-stepped solution associated with an explicit 
representation of the rotor windings is required. This 
approach, which obviously requires larger computational 
resources, is currently under investigation. 
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Abstract : The well knownChargeSimulation Method, which is 
commonly used for electric field calculations, is shown to be a 
particular and ill-conditioned case of the Least Squares Charge 
Simulation Method. By solving a practical problem, it is shown how 
to efficiently handle a least squares problem, thus obtaining results 
of higher precision if compared to the traditionalChargeSimulation 
Method. For the solution of the resulting linear system, several 
mathematical methods are analyzed and compared, being stated that 
the optimum combination of higher precision, lesser error 
propagation, lesser CPU time and lesser computer RAM are 
simultaneously reached when applying the Least Squares Charge 
Simulation Method, solved with the QR decomposition and 
Householder transformations. 

Key words : Electric fields, numerical methods, high voltage 
engineering, electrical engineering computing, digital simulation, 
least squares methods. 

1. INTRODUCTION 

The Carge Simulation Method (CSM) has been very commonly 
used for electric field computations in the last 20 years. From its 
introduction by [1], the method was modified with optimization 
techniques (OCSM) [2], least squares techniques (LSCSM or 
LSEM) [3], and in combination with other numerical methods 
(finite elements and finite differences) [4,5]. References [6,7] also 
present a good overview and some applications of the method. 

While the mathematical formulation of the OCSM is somewhat 
more complicated, the CSM and the LSCSM reduce to few and 
relatively easy steps: 

• Choose arbitrary points over the boundaries where electric 
potentials are known (vector <I>), 

• Choose arbitrary electric charges placed inside the given 
electrode (vector q), 

• Solve the system of linear equations P q = <I> then obtained, 
• Calculate the electric potential <j> and the electric field vector E 

where desired, using the solution vector q. 

P is a full matrix obtained from known relations between points 
and charges (the Maxwell Electric Potential Coefficients [1]), which 
depend essentially on geometric data. In the CSM, the number of 
contour points is equal to the number of simulated charges, while in 
the LSCSM a lesser number of simulated charges is chosen. 

As shown above, the CSM and the LSCSM are simple to apply. 
In some cases, however, the CSM lead to poor results (see section 
2). On the other hand, if the LSCSM is used with the so called 
normal equations (see [3], Appendix 3), it may result in a system of 
linear equations with a condition number (see Appendix V) many 
times higher that the CSM itself. In this case the increased error 
propagation may also lead to poor results. 

Considering thesepoints,the present work is intended to show 

how to deal with these methods in a more efficient way. The result 
is that the LSCSM, if properly applied, presents incontestable 
advantages over the traditional CSM. 

Section 3 is devoted to a detailed error analysis, stating the 
optimum relation number of charges / number of contour points. 
Section 4 deals with the problem from the condition number point of 
view. Section 5 presents the QR Decomposition and the Singular 
Value Decomposition methods for the solution of the LSCSM, 
allowing the resulting linear system a condition number many times 

smallerthan the CSM or than die LSCSM with normal equations. In 
addition, nine different mathematical methods are analysed and 
compared for the solution of the problem. Appendices I and V 
include the mathematical background necessary for a full 
understanding of the problem. 

Based in the results obtained with the new proposed formulation 
for the LSCSM, it can be concluded that, with an adequate relation 
number of charges / number of contour points, and with an adequate 
mathematical and computational treatment, the LSCSM results 
remarkably more efficient that the CSM. As a matter of fact, the 
LSCSM constitutes the generalization for the methods of simulated 
charges, where the traditional CSM is a particular and ill- 
conditioned case. 

2. APPLICATION 

Consider the three-dimensional axi-symmetric problem of Figure 
1, to be solved with the CSM and the LSCSM. The same problem 
was also solved by [6], using the CSM only. Note that problem 2 is 
similar to problem 1, except that it includes different electrical 
permittivities. The simulated (ring) charges and contour points were 
considered as shown in Table I. 

TABLE  1   -   NUMBER   OF   CHARGES 
AND   CONTOUR   POINTS 

1       Prob 1 em   1 Problem  2 
contour chorou contour 

points 
charges 

|points CSM LSCSM CSM LSCSM 

Electrode            66 66 27 66 66 27 

Enclosure 12 1 2 04 12 12 04 

In  dielectric, 
near ai r -   • - 

16 
16 06 

In  air,   near 
dielectri c - - - 16 06 

Total 88 88 31 104 120 43 

Order  of   the 
linear system 

CSM       -    88x88 
LSCSM    -    88x31 

CSM      -    120x120 
LSCSM   -   120x  43 

A detailed formulation of the CSM equations for problems 1 and 
2 is found in [6]. For both cases, a systems of m linear equations 
and n = m unknown electric charges is obtained, which can be 
written as 
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where 

Figure 1 - Three-diaensional axi-sunnetric application 

P q = *, (1) 

P is a full square matrix of order n x n. 
q is  a  vector  of order  n,   with   the  values  of  simulated 

charges which represent the physical problem. 
* is a vector with the given electric potentials. 

The same procedure is applicable to the LSCSM, except 
that a smaller number of simulated charges is chosen, 
resulting in a system of linear equations with m equations 
and n unknown electric charges (m > n). This system can also 
be written in the condensed form (1), where P is now a 
rectangular matrix, of order    m x n. 

A comparison of various methods for the computation of q 
is found in section 5. Once q is obtained, the electric 
potential 4> and the electric field E can be computed at 
every desired point p, by means of 

n 

*(p) = £ pij qj 

E(p) = )  (/IJ ar + /ij az) qj 

(2) 

(3) 

where 

pij   and   /ij   are   Maxwell   coefficients   (see   [1,6!;. 
qj are the simulated charges obtained from q, and 
ax and az are unit vectors for directions r and z . 

An exact solution would give the equipotential line of 
0 = 1.0 for all p located on the electrode boundary. 
However, due to the finite discretization of charges and 
contour points, the CSM and the LSCSM give an equipotential 
line which deviates somewhat from the electrode boundary, as 
shown by Figure 2. 

It is clearly shown in this figure the surprising fact 
that  a   reduction   in   the   number   of   simulated   charges   gives 

better results, since the respective equipotentiai line of 
0 = 1,0 clearly fits better to the electrode contour. The 
error of each method is quantified in section 3. 

In Figure 3, the electric potentials and electric field 
as computed by [6] for gap A-B of Figure 1 are reproduced 
and compared to the values computed with the LSCSM with data 
taken   from   Table   1.   Note   that   the   previous   unstable   zone 

i electric 
potentia 

electric 

B      25       58      73       188     125     159     175     288 

distance fro* A (ca) 

 LSCSM with 88 contour points    ... CSM, according to [t>3, with 
and 31 siMilated ring charges 77 contour points and 77 ring, 

point and Itne charges 

Figure 3 - Field calculation with CSM and LSCSM for oao AB 
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generated by the CSM (strong oscillations) is not present in 
the computation with the LSCSM. Furthermore, in [61 matrix P 
required the calculation of 77 x 77 = 5929 Maxwell 
coefficients, while the LSCSM used here required 88 x 31 = 
2728, what means considerable reduction in CPU time, as well 
as   in required computer RAM. 

It can be concluded that the CSM is more unstable and 
gives poorer results if compared to the LSCSM, particularly 
close to the boundaries. This is due to the fact that matrix 
P, having logarithm terms or similar, is close to a singular 
tnon invertible) matrix and therefore, ill-conditioned (see 
Appendix V) . 

3. ERROR ANALYSIS 

The conclusions of section 2 can be quantified by 
plotting the cumulative error of the electric potentials 
computed along the electrode boundary for several relations 
n/m, as shown in Figure 4. For instance, if we take the 
LSCSM with n/m = 0.90, the electric potentials computed 
along the electrode boundary (where the exact solution is <t> 
= 1.0) have an error greater than 1 7. for 50 7. of the 
electrode contour length. 

n/n (/.) 

18      28       38      48      58      68      78 

Figure 5 - jrf and |q|| for problem 1, as funtion of n/n 

X af contour 
Ifnsnt, for «hick 
th> cajculattd 
potential trror 
excttds abcitsa 

Figure 4 - Cumulative error for several relations n/« 
(nr. of charges / nr. of contour points) 

Figure 4 allows some important conclusions: 

a) The cumulative error increases for relations n/m close 
to 1.0. This is due to the fact that P tends to be 
ill-conditioned (see section 4) and therefore, close to a 
singular matrix. This also affects the norm of the vector of 
simulated charges q, as shown by Figure 5. Note that 
n/m = 1.0 is the particular case that represents the CSM . 

b) For the lower relations n/m, the number of simulated 
charges tends to be insufficient to represent the physical 
problem, leading to a significant residual vector 
r = P q - * , as shown by Figure 5. Therefore, the 
cumulative error also increases. 

c) The optimum range of the relation n/m is from 0.35 to 
0.80 . 

4. CONDITION NUMBER ANALYSIS 

The condition number of the linear system (1) depends on 
the relation n/m . Figure 6 shows the behavior of this 
parameter, which can be computed with the SVD method (see 
Appendix III.3) . 

It is clear from Figure 6 that the method used for the 
solution of the LSCSM equations is of primal importance. The 
LSCSM equations solved by the method proposed in 13] (normal 
equations) may generate a matrix P with a condition number 
greater than the CSM itself, what may lead to severe error 
propagations during the computations. 

On the other hand, the LSCSM equations solved by the OR 
decomposition (Appendix III.2) or the SVD (Appendix III. 3) 
always result in a condition number for P which is lower 
than the condition number computed for the CSM and for the 
LSCSM with normal equations. Therefore, as far as the 
condition number is concerned, the QR decomposition and the 
SVD methods are more effective. 

t  condition 
number K(A) 

«I  ! 

CSM 

Figure D - Condition number as a function of n/m 
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METHODS  FOR  THE SOLUTION  OF 
THE  RESULTING  LINEAR  SYSTEM 

It was also shown 
of view, the OR 
prefered      to   the 

It can be concluded from above sections that the LSCSM. 
with an adequate choice for the relation n/m, gives results 
of higher precision than the straight CSM. 
that under the condition number point 
decomposition and the SVD methods are 
method of normal equations used so far. . 

In this section the problem is analyzed as function of 
the CPU time and the required computer RAM, including a good 
number of mathematical methods for the computation of the 
vector of charges q . 

Note that the CPU computer time is also a good indication 
of the number of arithmetic operations taken by the 
computer. Thus, the bigger is the required CPU computer time 
the bigger is the possibility of a significant error 
propagation. 

Table 2 shows the CPU time required by an 
IBM 3090-300S computer for the solution of problems 1 and 2, 
taken in percentile rates of the time required for the CSM. 

6.  CONCLUSIONS 

The traditional Charge Simulation Method was shown to be 
a particular and ill-conditioned case of the Least Squares 
Charge Simulation Method, which is the generalization. 

The  best relation number  of  charges / number of contour 
points (n/m) lies in the range 0.35 < n/m < 0.80 , where the 
LSCSM results remarkably more precise than the straight CSM, 
specially close to the boundaries of the problem. 

The LSCSM computed with the QR decomposition generates a 
system of 1 i near equati o ns with a condition number 
significantly lower than the LSCSM with normal equations as 
used so far, thus reducing error propagation during the 
computations. 

The optimum combination of higher precision, lesser error 
propagation, lesser CPU computer time and lesser computer 
RAM are simultaneously reached when applying the Least 
Squares Carge Simulation Method, solved with the OR 
decomposition and Householder transformations. 

1 

TABLE   2   -   COMPARISON  OF   VARIOUS   METHODS 

Method      of 
calculation 

Cond i- 
t i on 

number 

Approx. 
RAM 

CPU   time (7. 
Prob. 

1 
Prob. 

2 

CSM    1             LU KIP ) 
s    108 mxm 100 100 

LSCSM 

(with 
n/m   E 
0.35) 

Nor- 
ma 1 

Equa - 
t i ons 

CG 

K(PlP) 

=    106 mx n 

9 1 66 

CGS 172 188 

CD 37 35 

LU 39 36 

OR 

CLG 

K(P) 

«    103 

mxn   + 
n(n+1 ) 

42 38 

MOG 40 39 2 

GR 
mxn 

40 37 

HD 37 33 

SVD 2 mx n +n 57 66 

code              Description Appendix 
CSM         Charge    Simulation   method 
LSCSM   Least   Squares Charge Simulation Method 
OR            OR   decomposition 
SVD         Singular   Value   decomposition 
CG            Conjugate   Gradients 
CGS         Conjugate   Gradients    Squared 
CD            Cholesky   decomposition 
LU            LU   (Gauss   p i v o t i n g Wecomposition 
CLG         Classical   Gram-Schmidt 
MOG        Modified   Gram-Schmidt 
GR            Givens    rotations 
HD            Householder   transformations 

II I . 2 
I I I . 3 
IV. 1 . 1 
IV. 1 .2 
IV. 1 .3 
IV. 1 .4 
IV.2. 1 
IV.2.2 
IV.2.3 
IV.2. 4 

From Table 2 it can be concluded that 

a) The LSCSM solved with the QR decomposition and 
Householder transformations presented the best performance, 
since it requires lesser CPU computer time and lesser RAM . 

b) The CGS method, which showed an excellent performance 
in problems with sparse matrices as reported by 15], did not 
show a good performance here with a full matrix . 

c) All methods for the solution of the LSCSM with normal 
equations (i.e. CG, CGS, CD and LU) require special 
computational considerations in order to avoid additional 
RAM required for the storage of    matrix    P*P . 

APPENDIX I 

Mathematical background ([8,9.10.11,12]) 

Let  A  =  laij]  denote  a  real  matrix  of  order     mxn  (man) 
with   elements   aij,    and   x   =    [xi.xz x-n?   denote   a   real 
column vector of order "n with elements xt . 

The transpose of A is A1, where A* = [aji] . A is 
symmetric if A' = A. If m=n. the inverse of A is denoted by 
A" . with A" A = I (unit matrix). 

,_ 2.1/2 (I  xi ) The   Euclidean   norm   of   vector   x   is   llxll 
Another   usual   vector   norm   is   the   infinite   norm   defined   as 
llxUco =  max   |xi|.   A  norm  for  matrix  A  can   be  defined  as 
IIAII = max UAxll/llxll, for all x * 0. 

The n column vectors ai from A, of order m, is said to be 
linearly independent if £ aiai = 0 is satisfied only for 
oi=0. In this case, A is said to be of ranjc n. A is 
invertible if rank(A) = m = n . 

If x Ax > 0 for all vector x*0, A is said to be positive 
definite. If rank(A) = n, A A is symmetric and positive 
definite. 

If A A = I, A is said to be orthogonal and in this case, 
IIAII = 1. A is a lower triangular matrix if aij = 0 for all 
j>i, upper triangular if aij = 0 for all I>J, and diagonal 
if aij = 0 for all i*j. 

The inner product of two vectors x and y is a real number 
denoted by <x,y> = I x\y\. 

APPENDIX II 

Matrix decompositions 

UJ decomposition: If rank(A) = m = n. then only one 
decomposition A = LU exists, where U is upper triangular and 
L is lower triangular, with unit diagonal ([8,9,10]). 

QR decomposition: If rank(A) = n, then only one 
decomposition A = QR exists, where R is upper triangular of 
order nxn and Q is orthogonal of order mxn ([8.9.12]). 

Singular Value decomposition (SVD): A can be written as 
A = U S V , where U is orthogonal of order mxn. V is 
orthogonal of order nxn and S is diagonal of order nxn, 
whose diagonal elements <n £ <rz £ ... £ on £ 0 are known as 
the singular values of A ([8.9,11,12]). 

Cholesky decomposition: If A is symmetric and positive 
definite, then only one decomposition A = R"R exists, where 
R is upper triangular with positive elements in the main 
diagonal ([8,10.12]). 
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APPENDIX III 

Overdetermined linear systems 

Let A x = b be a linear system of m equations and n 
unknown vaiues. so that m > n. This system of equations is 
said to be overdetermined, and usually have no exact 
solution. Let   r = b - Ax    be the residual vector. 

It is reasonable to search for an approximate solution to 
this linear system, giving the lowest possible residual 
vector. Usuali- a least squares method is considered, which 
consists in determining the unique vector x which gives the 
lowest Euclidean norm for the residual vector (minimum llrll). 
A brief description of the most common methods follows. 

111.1 Method c:~ the normal equations 

It is shown by [8.9.12] that vector x, solution for the 
least squares problem, is also the solution of the linear 
system 

A*A x    =    A*b (4) 

of order nxn. aiso known as a system of normal equations. 

Since A A is symmetric and positive definite, some 
mathematical procedures are applicable (see Appendix IV. 1) 
for the solution of (4). On the other hand, the condition 
number of the resulting linear system is affected since 
K1A A) = K(A';" . which may compromise the solution due to 
increase of error propagations. 

111.2 Method of the QR decomposition 

It   is   shown   by   [8.9.12]   that   vector   x.   solution   for   the 
ieast  squares   problem,   is   also  the  solution  of 

R x    =    0% (5) 

where QR = A. This linear system of order nxn is easily 
solved by back-substitution since R is upper triangular. 
Therefore, the main computational effort is the 
determination of the OR decomposition of A (Appendix IV.2). 

Ill-3 Method of the Singular Value decomposition 

It   is   shown   by   [8.9.11,12]   that   vector   x.   solution   for 
the least squares problem, is given by 

=    V S"1 Ul b (6) 

where U S V = A is the Singular Value decomposition of A. 
Since S is a diagonal matrix. S"1 is easily obtained and 
then expression (6) reduces to simple matrix-vector produts. 
As in section III.2, the main computational effort is the 
determination the Singular Value decomposition of A 
(Appendix IV.3). 

APPENDIX IV 

Mathematical methods  for least squares problems 

IV. 1   Methods for the solution of the 
normal equations (equation 41 

The conjugate gradients (CG), the conjugate gradients 
squared (CGS!. the Cholesky decomposition (CD) and Gauss 
pivoting (LU decomposition) methods are analyzed in the 
following sections. 

IV. 1.1 Conjugate gradients (CG) 

The CG method is only applicable to symmetric and 
positive definite linear systems, as (4). The algorithm 
is demonstrated by [8]. The matrix product A'A is avoided 
using the property of inner products <A'Ax.y> = <Ax.Ay>. 
which is easily demonstrated. The resulting algorithm for 
the solution of (4) is 

xo = 0 
ro = Alb 
For k = l...n 

if rk-i = 0 then 
Set x = xk-i and quit 

else 
Sk = <Tk-l.rk-J>/<rk-2J-k-2> (ßi = 0) 
pk = rk-l  + ßk pk-l (pi= ro) 
eck = <Tk-lXk-l>/<A pk.A pk> 
Xk = Xk-1  - cue pk 
rk = Al(b - A xk) 

X = Xn 

IV.1.2 Conjugate gradients squared (CGS) 

The CGS doesn't require A to be symmetric and positive 
definite, unlike the CG method. It is included here due to 
the good results obtained with sparse matrix as reported by 
[5,131. The final algorithm [13] for the solution of (4) is 

estimate xe 
To   =   A   (b   -   AXo) 

1 n 
o -1 - 1 

while  rn   >   tolerance      do 
pn      =   <ro,m>   ;   ßn  = pn/pn-1 
Un    =   Tn    +   Sn   qn 
pn   = Un   +   ßn   ( qn   ♦ ßn   pn-j) 
V n   = A    ( Apn ) 
Cn   =   <ro,Vn>    ;   an  = pn/ern 
qn«!   =   Un   -   an   Vn 
Xn»l   =   Xn   *   an    (un   ♦   qn»l) 
rn-i   =  A   (b - A xn• i)   ;   n=n+l 

end 

IV.1.3 Cholesky decomposition (CD) 

Since A A of (4) is symmetric and positive definite, it 
is possible to use the Cholesky decomposition A*A = RrR 
(where R is upper triangular). Therefore, equation (4) 
becomes R R x = Ab. The later is easily solved with an 
auxiliary vector y, according to the sequence 

R   y    =    A   b      (y is obtained by forward substitution) 
R   x   =    y (x is obtained by back substitution) 

Note that the matrix product A*A needs to be computed 
before R. The elements nj of R are computed from the 
elements of matrix AtA = ft = Uijl . with the algorithm 
(1121) 

For j = 1.. .n 
For k = 1...j-i 

end 

end 

kj =    Akj -   £ rik rij 

r Jr        211/2 

*• k=l -1 

/ nek 

IV.1.4 Gauss pivoting (LU decomposition) 

The well known method of Gauss pivoting [8.9.10.11.121 
can be used for the computation of the decomposition 
A A = LU (Appendix II). Thus, equation (4) becomes 
L U x = A b, which is easily solved with an auxiliary vector 
y, according to the sequence 

L y = A   b   (y is obtained by forward substitution) 
U x = y (x is obtained by back  substitution) 

As in section IV.1.3, the matrix product A1 A is computed 
before the LU decomposition . 
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IV.2  Methods  for the QR decomposition (for equation 5) 

The Classical Cram-Schmidt, Modified Gram-Schmidt, Civens 
rotations and Householder transformations methods are 
briefly described in the following. 

IV.2.1 Classical Gram-Schmidt (CLG) 

In this method. Matrices 0 and R are sequentially 
computed column by column. The algorithm and detailed 
mathematical description are found in [8,9.121. Once A is 
overwritten by Q, an additional space of dimension n(n+l)/2 
is necessary for the storage of R. 

IV.2.2 Modified Gram-Schmidt (MOG) 

perturbations in the elements of A or b affect the soluticn 
vector x. This can be evaluated from the condition number of 
A, written as KtA). If K(A) is large, small perturbations in 
A or b may cause significant perturbations in the solution 
vector x. In this case, A is said to be ill-conditioned. 

The condition number is greater or equal to 1. It also 
indicates how much A is close to a non invertible matr:x 
[see 91. Therefore, it is desirable that K(A) be as low ES 
possible. 

If m=n, it is possible to show (see [8,9,11]) that 
K(A) = IIAII-llA" II. In general, if rank(A) = t. we use the SVD 
of A (see Appendix II) to obtain KtA) = <n/ox. The condition 
number defined in this way is known as the spectral 
condition number.   Another important result  is  K(A'A)  = K(A)2. 

This is a slight modification to the CLG method, leading 
to a better numerical performance. Q is computed column by 
column, and R is computed line by line. Other comments as 
for CLG. See 18,9,121 for algorithm and details. 

IV.2.3 Givens rotations (GR) 

Algorithm and mathematical description are found in [8!. 
A is overwritten by R. and the product Qlb (necessary for 
equation S) is computed while computing R, thus not 
requiring additional RAM for R as the CLG or MOG methods. 

IV.2.4 Householder transformations (HT) 

A matrix H of order nxn, defined as 

H = I - 2 wV<v,v> 

is said to be a Householder transformation (also known as 
Householder matrix or Householder reflection), where v is a 
vector of dimension n. It can be shown that H is an 
orthogonal matrix [81. 

In   this   method,   an   adequate   Hi   is   chosen   so   that   the 
product HiA results in  a matrix with null elements  below the 
main diagonal  of A at  a given column.   By a chain  repetition 
of  this  product  we get  the matrix  R  =  Hn...H2HiA   =  QlA 
Algorithm and mathematical details are found in [8.121. 

As in the GR method, A is overwritten by R, and the 
product O'b (necessary for equation 5) is computed 
sequentially while computing R. Therefore, no additional RAM 
is necessary for R 

IV.2  Methods for the Singular Value 
decomposition (for equation 61 

As shown in section III.3. the solution for a least 
squares problem by the SVD reduces to a sequence of 
matrix-vector products,  i.e. 

is   promptly 

make y = If b . 
then z = S-' y , 
and X =  V  Z  . 

Note   that   S   is   a   diagonal   matrix,   so   S" 
obtained. 

The theoretical basis for the computation of the SVD is 
somewhat complicated and will not be discussed here (see 
[121 for instance, which uses basically Householder 
transformations). 

Once A is overwritten by U, it is required an additional 
space of order n*n for the storage of matrix V. The diagonal 
matrix S obviously requires only a vector of dimension n for 
the storage of the non zero values (the singular values <n) 
of the main diagonal. 

APPENDDC V 

Condition number of a  linear system 

Let     A  x  =  b  be   a  system of   linear equations  of  order 
mien  so  that   m£n.   It   is   important   to   know  how   much   small 
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Abstract: A new treatment is proposed to the hybrid method 
of Finite Differences and Charge Simulation for the 
computation os electric fields, entirely applicable to the 
similar hybrid method of Finite Element and Charge 
Simulation. The resulting system of linear equations is solved 
by       using the   fixed   point   theory,   the   QR 
decomposition and the Conjugate Gradients Squared method 
with a preconditioning technique. New procedures are 
suggested for the discretization of the boundary conditions, 
which lead to results with higher precision. Case studies are 
included. 

Key words: Electric fields, numerical methods, high voltage 
engineering, electrical engineering computing, digital 
simulation. 

1. INTRODUCTION 

The Finite Difference Method (FDM), the Finite 
Element Method (FEM) and the Charge Simulation Method 
(CSM) are very commonly used for field analysis of high 
voltage insulation systems. The CSM is suitable for 
unbounded problems, but becomes complicated for problems 
including dielectrics. On the other hand,the FDM and FEM 
are suitable for multi-dielectric cases, but require truncation 
of the domain for unbounded problems. Thus, a hybrid 
method may be a promising tool for unbounded problems 
including dielectrics, where the FDM or the FEM is applied 
inside a limited arbitrary region, and the CSM is applied to 
the unbounded exterior. Along the coupling surface continuity 
conditions are imposed. 

Early research work [1,2,3] presented practical 
examples of this hybrid method, pointing out its advantages 
and disadvantages. Either the hybrid FDM & CSM or the 
FEM & CSM require the solution of a system of linear 
equations, whose matrix of coefficients (square in principle) 
is composed by full submatrices (resulting from the CSM) 
and sparse submatrices (resulting from the FDM or FEM). 
The present work deals with the formulation of 
adequate procedures for the solution of this linear system, 
which results in a significant smaller computer storage, 
smaller CPU computer time and results with higher precision 
if compared to [1,2,3]. In addition, the convergence of the 
proposed iterative method is not dependent on the arbitrary 
initial conditions as [1] does. 

The application of the CSM to the unlimited exterior 
region as it was previously considered by [1,2,3], leads to full 
square submatrices and demands an excessive amount of 
computer memory. It is shown in section 3 that it is possible 

to significantly reduce the required computer memory, by 
choosing a number of simulated charges which is smaller than 
the number of contour points. This leads to a least squares 
problem, which is solved by means of the QR decomposition 
[4,5] of the resulting full rectangular submatrix, using the 
Modified Gram-Schmidt method. This procedure only 
demands from 30% to 50% of the computer memory initially 
required by the original problem, without loss of precision. 

The application of the FDM or the FEM to the limited 
region leads to a sparse linear system of the A x = b type. It is 
possible to use the Conjugate Gradients method (CG) [4], a 
Krylov Subspace method (KS) [6] or the Conjugate Gradients 
Squared method (CGS) [7] for the solution of this linear 
system. These methods have advantages over the traditional 
Gauss-Seidel, SOR and others (used by [1,2,3]), since they 
reach the exact solution in a number of steps at most equal to 
the matrix dimension. The CGS with a preconditioning 
technique is suggested for the solution of the problem, 

since it demands less CPU computer time and less 
computer memory than other methods (see section 4). 

The hybrid method requires a discretization for the 
normal component of the electric flux density vector D (i. e. 
n-D) all over the arbitrary rectangular surface of discontinuity 
on the electrical pennittivity e (coupling boundary). This 
leads to a discretization of the normal derivative of the scalar 
electric potential function (since D = - e VO ). The error of 
such discretization as computed by [1,2,3] for rectangular 
surfaces is of the order of h (i.e. 0(h)), where h is the grid 
step (distance between two consecutive nodes). It is shown 
(section 5.1) by the use of the Taylor series expansion, that it 
is possible to obtain a simple discretization with an error of 
0(h2). A discretization for curvilinear surfaces is also 
presented (section 5.2), being of interest when a discontinuity 
on e exists. These methodologies for the discretization of 
n- VO lead to results of higher precision if compared to those 
used by [1,2,3]. 

Finally, adequate procedures for the solution of the 
combined system of linear equations that results from the 
hybrid method are stated. A direct solution is not 
recommended due to the irregular structure of the coefficient 
matrix. Reference [1] proposes an iterative scheme which 
depends on a good initial estimate. In addition, it may not 
reach the solution for certain cases. The approach used here 
(section 6) is based on the fixed point theory of linear systems 
[4,5]. The utilization of an arbitrary but rather predictable 
parameter (9) leads to convergence in a significantly greater 
class of problems (if not all), not depending on the initial 
estimates for the electric potentials. Some examples are 
included and the results are analysed (section 7). 
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Figure 1. General problem treated with the FDM & CSM 

Considering the points above, it is supposed that the 
present work may represent a new motivation for the 
utilization of the hybrid FDM & CSM or FEM & CSM on the 
computation of two-dimensional or three-dimensional with 
axial symmetry electric fields, as frequently found in high 
voltage engineering. 

2.    DEFINITION OF THE COMBINED 
SYSTEM OF LINEAR EQUATIONS 

The hybrid FDM & CSM applied to the general two- 
dimensional problem of Figure 1 will be considered in the 
following sections. 

Suppose that it is needed to calculate the electric 
potential distribution near electrode A, sorrounded by a 
region (Q2) with electrical permittivity 82. An arbitrary 
rectangular boundary 3Qi involving A and Q2 is defined, 
inside which a finite difference grid with M nodes is placed. 
This also will define N nodes on öQi and W nodes on ££h. A 
discretization with V contour points is made on the boundary 
5QB of the external electrode B, and K+L charges are 
simulated as indicated in Figure 1. 

It was already shown by [1,2,3] that, for two-dimensional 
or three-dimensional problems with axial symmetry, the 
application of the FDM & CSM (or the FEM & CSM) to 
Figure 1 leads to a system of linear equations, which is 
represented here by the following equivalent system with 
submatrices: 

(l) 

Pi -I 0 ' ' q ' ' 0" 
P2 0 0 *i = 4B 

F So Si ♦0 0 
0 S2 D c 

where 

a) The matriz equations Pi q 
from the CSM, and 

■ I <t>i =0 and P2 q = 3>B result 

Pi = full matrix, dimension N x (K+L) 
P2 = full matrix, dimension V x (K+L) 
I = Identity matrix, dimension N x N 
q = vector of simulated charges, dimension K+L 
<Di = vector of electric potentials on 5Qi, dimension N 
OB = vector of electric potentials on öQB, dimension V 
Pi and P2 are the Maxwell electric potential coefficient 
matrices 

b) The matrix equation F q + So Oi + Si <Do = 0 results from 
the continuity condition n*D on 5Qi, and 

F = full matrix, dimension N x (K+L) 
So = sparse matrix, dimension NxN 
Si = sparse matrix, dimension NxM 
<Do = vector of electric potentials on Qi, Q2 and QA, 
dimension M 
F is the Maxwell electric field coefficient matrix 

c) The matrix equation S2 <&i + D «Do = c results from the 
FDM (discretization of the Laplacian operator [3,9]), and 

S2 = sparse matrix, dimension MxN 
D = sparse matrix, dimension MxM 
c = sparse vector 'which depends on the given electric 
potential vector 3>A of the electrode A. 

The form (1) is adequate for a problem with only one 
dielectric. A small modification is suggested for the general 
problem of Figure 1 (with two or more dielectrics), since it is 
more convenient to treat Qi   and Q2 separately, taking an 
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additional vector O2 for the electric potentials on ÖQ2. 
Therefore, the problem can be formulated as follows: 

S2O1+DO0 + Sj<J>2 = C (5) 

On the region Qi and its boundary: 

A0> = 0 
<£ = <J>i 
0 = 02 
n-D =g 

onQi 
onSQi 
on5Q2 

, i.e.,   - si dQ>/dn = g 

(2) 

ondQ2 

where A is the Laplacean operator 
and g is an auxiliary function 

On the region Q2 and its boundaty: 

A O = 0 on Q2 
O = <t>A on SQA 

O = <1>2 on 5Q2 
n-D = - g , i.e., - 62 dO/dn = - g    on 5Q2 

(3) 

Joining (2) and (3) together, the following problem is 
obtained, 

(4) 

e)   ei dO/da + 62 di>/da = 0  on 5Ü2 

The discretization of (4a) as given by [9] for two- 
dimensional problems (see [10] for three-dimensional 
problems with axial symmetry) and applied to the general 
node Po of Figure 2 is 

a) A<D = 0 on Qi u Q2 

b) <£ = <I>A onSQA 

c) 0 = <X>i ondQi 

d) G>=<&2 on5Q2 

P2 

qh 

rh 
P3 Po 

P4 

h AS(Po) *(Pi) *(P2) 

ph Pi 

sh 

" p(p+r) qtq+s) 

»(P3) »(P4) 
r(p+r) s(q+s) 

^ + ^' *(Po) = pr       qs 

Figure 2.  FDM  discretization 

where    h = grid step;       0 < p,q,r,s < 1.0 . 

If we have 0 < p,q,r,s < 1.0 when Po is adjacent to the 
boundary, and p,q,r,s = 1.0 in the interior region (which 
means a grid with square elements in the interior), then the 
above discretization has an error of 0(h2). In any other case 
the error is of 0(h)       [9]. 

Once the expression above is applied to every single 
node of the FDM region, a sparse linear system of dimension 
M is obtained. When Po is adjacent to 5Qi or 5Q2,, the 
corresponding equation includes some nodes from the vector 
<Di or <I>2 respectively. Adjacent to 5QA , the equation for Po 
includes some nodes from the given electric potential vector 
<J>A. Therefore, the final sparse linear system that results from 
(4a), (4b), (4c) and (4d) have the following matrix form 
(including S3 as the additional sparse matrix associated to the 
new vector 5>2) 

On the other hand, (4e) is applicable to the W nodes of 
9Q2, which requires the discretization of dO/da at each one of 
these nodes. Hence, a total of W equations can be written, 
including the electric potential vectors <I>e and O2 (see 
section 5.2). These equations have the following matrix form: 

S«<J>e+E<I>2 =0 (6) 

Finally, (1) and the suggested forms (5) and (6) are 
placed together in a single system,. 

Pi -1 0 
P2 0 0 
F So Si 
0 S2 D 
0 0 SA 

0 ' 
0 

' q ' 
*i 

_ 
' 0 ' 

*B 

0 *0 0 
S3 

E 
[iz\ c 

O 

(7) 

This system is equivalent to the more explicit form of 
Figure 3. 

The CSM equations and the FDM are treated separately 
for the solution of (7), as described in the following sections. 

N 

N 

\        -I 

M 

0 

w 

0 

V p2g 0 0 0 

N ^Fg 
'.      So 

"  ."■-■   sT'- 
0 

0 

err: •'•.;.■■ .-. 

4=ES>S:5%iHr;3iS; 

£'..* '*2_::''r ■-.'■.• 
\      S3   ' M |Sz 1 

*".7i        -:'-: 

W 0 0 

H>'V> -----    " -- 
'.     E 

'1   '.?4. 

r      -1 1 
q 

0 

4M 

— *B 

=   

♦0 0 

*2 

C 

Diagonal 
submatrix 

Ful 1 
submatrix 

Spa r se 
submatrix 

Figure 3. The complete system of linear equations 

3.    CSM WITH LEAST SQUARES 

Suppose that the electric potentials are given on öQi 
(vector <t>i) and inside Qi (vector Oo). Therefore, the vector 
of charges q can be calculated by means of the CSM, solving 
the following system obtained from (7) 

P2|   q *B 
(So*i+Si*o) 

(8) 

which may be written in the condensed form C q = d . 

Since (8) has V+N equations and K+L unknown charges 
(and provided that V+N a K+L), the least squares method can 
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be used to find the vector q. In this method, the calculated 
vector q minimizes the Euclidean norm of the error vector 
Cq-d. One of the best ways of doing so is to utilize the 
method of the QR decomposition [4,5], calculating QR = C, 
where Q is a V+N x K+L matrix with orthonormal columns 
and R is a K+L x K+L upper triangular matrix. It is possible 
to show that the sparse linear system R q = QTd (where QT 

means the transpose of Q) provides the exact vector solution 
q for the least squares problem. This system is easily solved 
by back-substitution since R is upper triangular. 

Q and R may be computed by the modified Gram- 
Schmidt method, whose mathematical description and 
algorithm are found in [4,5]. In a computer program, Q may 
be stored over the space of memory of matrix C, and the lines 
of R with only its non-zero elements can be sequentially 
stored as a vector. 

The QR method does not require the computation of the 
matrix product CTC, as the traditional least squares CSM. 
This advantage may significantly reduce the propagation of 
errors during the computations. 

It will be shown (section 7) that a ratio of L/N (number 
of simulated charges / number of contour points) from 30% to 
50% is sufficient for practical purposes. 

4. FDM WITH THE CONJUGATE 
GRADIENTS SQUARED 

Supposing that vector <S>i is known on 9Qi, vectors Oo 
and <1>2 can be calculated with the FDM, solving the 
following system obtained from (7) 

D     S3 
S4      E 

C   -   S2*l 

0 
(9) 

This system can be written in the condensed form 
A <S> = b. The matrix A has only about 1% of non-zero 
elements, and can be stored in a very simple scheme by 
means of the following vectors: 

HJN(k) -     stores the line number of matrix A, associated 
to its k-th non-zero element 

JCOL(k) -     stores the column number of matrix A, 
associated to its k-th non-zero element 

VAL(k) -     stores the numeric value of A(ILIN(k),JCOL(k)) 

Having A stored this way, a matrix-vector product of the 
type y = A i can be easily computed with the following 
algorithm 

Fori=l,NTOT 
y(ILIN(i)) = y(ILIN(i)) + VAL(i) * x(JCOL(i)) 

end 

where NTOT is the total number of non-zero elements of A . 
It is easy to see in this algorithm that no ordination is 

necessary to the elements of A when generating the vectors 
UN, JCOL and VAL. This property is specially suitable to 
problems of the type which we intend to study. 

Therefore, any method that doesnt require operations 
more expensive than the product matrix-vector can be used 
for the solution of (9), in principle. To this class of methods 
belong the Conjugate Gradients and some derivations. 
Besides this simple way of storage, these methods have the 

advantages of reaching the exact solution after a finite 
number of steps (theoretically at most equal to the matrix 
dimension), and for any initial estimate. The following was 
considered: 

a) Conjugate Gradients (traditional) (CG) [4,5], without 
preconditioning and with a diagonal preconditioning, 

b) Krylov Subspace method (KS) [6], without 
preconditioning and with a tridiagonal preconditioning, 

c) Conjugate Gradients Squared (CGS) [7], without 
preconditioning and with a tridiagonal preconditioning. 

The CG requires A to be a symmetric and positive 
definite matrix. Since this is not the general case, it only can 
be applied to the modified normal system ATA <& = ATb 
(since ATA is symmetric and positive definite). 

The KS requires the calculation of a vector basis to the 
Krylov subspace (which dimension is arbitrary). This vector 
basis may demand a significant additional memory in the 
computer. 

Th CGS doesnt require the product ATA as the CG nor 
the additional storage as the KS and, when used with a 
preconditioning technique, it needs less CPU computer time 
(see section 7). Therefore, the CGS is suggested for the 
solution of (9). Appendix I includes some details as well as 
the algorithm used for the CGS. 

5. CONTINUITY CONDITIONS ON BOUNDARIES 

An adequate application of the Maxwell equations gives 
the necessary continuity conditions [1,2,3], i.e., <S> and n-D 
are continuous across 3Qi and dQx- The condition n*D 
demands a specific equation to be applied at any contour 
node. 

5.1 Discretization of n-D on dQi 

Since £ is constant on both sides of 5Qi, the continuity of 
n*D is equivalent to the continuity of n-VO . As already 
shown by [2,3], the CSM applied to n-VO leads to the 
expression 

IC-L 

'I 
j = l 

n-V4(Pi) = - V    fij qj ,    i=i...N (10) 

where fij are the Maxwell electric field coefficients. 
References [2,3] use only one internal node of Qi for the 

application of the FDM (ortheFEM) to the continuity of 
n*VO , which result in an expression with an error of 0(h) 
only. A discretization with an error of 0(h2) can be obtained 
using the Taylor series expansion as exposed in Appendix n. 
then 

n-vWi)    =    ct*(Pl) + ßS(Pi-l) + jr*(Pt-z) (11) 

where Pi lies on 5Qi and Pi-i and Pi-2 are internal nodes 
of Qi. 

The final coupling equation is a result of taking (10) = 
(11), or 

r £' fij qj + [a«(P0 + ß*(Pi-i) + y*(Pi-2)l = 0 , I=I...N 
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which has the equivalent matrix form F q + S0O1 + S1O0 = 
0, also included in (7). It is easy to see that F is a full matrix, 
So is a diagonal matrix and Si is a sparse matrix with only 
two non-zero elements per line. 

5.2 Discretization of n'D on dQi 

It is seen from (4e) that this continuity condition requires 
the discretization of dO/da in two stages 

a) ei dQ/dn, using nodes of Qi, 
b) 62 dQ>ldn, using nodes of Qj. 

The method proposed by [8] uses the node on the 
boundary and other three internal nodes, and is considered in 
some details in Appendix HI. Using the proposed 
discretization, (4e) takes the form 

£   [a [*(P )-*(P  )] + c   V a   [*(P )-<MP   )1 = 0 
1  L     1J I lj 2 L     2j i 2j 

(12) 

where    Pi lies on ÖQ2, 
and        Pij and P2J are internal nodes of Qi,Ü2 respectively. 

The matrix form (6) is obtained applying (12) to i=i... w , 
where E is a diagonal matrix and S4 is a sparse matrix with 6 
non-zero elements per line. 

6. SOLUTION OF THE COMBINED 
SYSTEM OF LINEAR EQUATIONS 

It was already shown that the system of linear equations 
that represents the hybrid FDM & CSM has the matrix form 
(7). In order to facilitate our analysis, this system is written as 

Pi -I 0] " q' r ° 1 P2 0 0 *i = *B 
F So Zi * 0 
0 Zz A z 

"D    S3" 
S4    E ;  * = *0 

*2 
; z = 

c 
0 

, where 

Zi = [Si 0] Z2 = 

(13) 

IS2 

Lo 

According to the fixed point theory applied to linear 
systems [4], (14) converges whenever CT(T) < 1, where <r(T) is 
the spectral radius (the largest absolute value in the set of 
eigenvalues) of T, for any initial estimate q° . T is also 
known as the "iteration matrix". 

It is possible to show (Appendix IV) that an iterative 
method can be derived so that an expression for T results in 

e 1   +   d-elR'V 
ZiA   Z2 - So 

Pi (15) 

where    Q and R come from the decomposition r2j = QR 

and       8 is a parameter to be chosen for every problem in 
order to make cr(T) < 1, and so allowing (14) to 
converge. It holds in general that 0 < 9 < 1 . 

Obviously a(T) and T do not need to be explicitly 
calculated. Figure 4 includes a flowchart for the iterative 
method which generates T precisely as expression (15). 

1 ) Est imate *i 

I 
12) Calculate q with CSM 

*3)  Solve   with   COS:   A  * Z2*l 

X 
4)   Determine  /"   =  So»?  +  Zi$"| 

-L 
5)   Solve    by  QR:    £2]    r"  =   [_Jgl 

yes 9) Solution: 
n   _n   ,n 

7)  Determine   q   *   =  Sqn+   (l-fl)r 
I 

8)   Calculate   $"*'   =  Pi   q°" 

Figure 4.  Iterative method for the solution of (13) 

Since (13) is composed by different kind of submatrices 
that came from distinct problems (i.e. the full rectangular 
submatrices from the CSM and a sparse square submatrix 
from the FDM), it is suggested to solve this system using an 
iterative method. Doing so, each part of (13) can be treated 
separately in an optimized way. 

Notice that once the vector of charges q is known, the 
whole problem is solved. Therefore, an iterative method can 
be derived by using the general expression of the fixed point 
theory [4] 

Observations: 

a) The iterative method (14) is not dependent on the initial 
estimate q° . However, it is possible to obtain a good initial 
estimate for q by choosing Oi (step 1 in Figure 4) and 
solving once with the QR decomposition (step 2) the 
following least squares problem, taken from (7) 

IS] QRq M' = QT r*?i 
_*Bj 

q       = T q    + u 

where    T is a matrix of dimension K+LxK+L, 
u is a vector of dimension K+L, and 
n is the iteration number. 

(14) 
b) The given electrode potentials are included in vectors OB 
and z, which do not appear in expression (15). So the 
convergence to the solution (which according to the Gxed 
point theory depends on the eigenvalues of T) does not 
depend on the given electrode potentials. 
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c) In view of the complexity of (15), the parameter 0 can only 
be estimated by experience. For most of the tested problems 
we hadconvergence with 9 = 0.6 to 0.9 . 
d) The iterative method proposed by [1] corresponds 
somewhat to the particular case of 6 = 0, which doesnt mean 
that (14) will always converge. The possibility of a choice for 
9*0 permits the solution of a greater class of problems. 

7. APPLICATIONS 

Table   1 
Error  on  *i 

L/N 7. 
0.50 0.01 
0.40 0.05 
0.30 0. 16 
0.20 1.33 
0. 10 ±   20.0 

Tab 1 e    2 
CPU  time     (s) 

Method l 2 

CG 1 13.5 56.9 
KS 453.7 17.8 
CGS 36.7 9.6 

1 -   without precond. 
2 -   wi th  precond. 

We used the hybrid FDM & CSM for the calculation of 
the electric potential distribution close to the surface of an 
infinite cylinder above earth, since this case has an exact 
(analytical) solution. Details are reported in [11], and indicate 
that for this case the electric potentials calculated with the 
hybrid FDM & CSM have an error of less than 1%. 

In a more general case, we used the hybrid FDM & CSM 
for the calculation of the electric potential distribution in the 
two-dimensional, unbounded and multi-dielectric problem as 
indicated in Figure 5. 

CSM region 

Table 2 shows the CPU time for the methods 
CG, KS and CGS (with L/N s 33%) on an IBM 3090-300S 
computer. The CGS with a tridiagonal preconditioning was 
shown to be the fastest. 

As  an  illustration,   Figure  6   shows  the   computed 
equipotential lines inside   the FDM region,   considering 
S2 = 2.0 and S3 = 5.0 . 

\^^^\     ■^■>^'v^'^<\S\\\S\\ ^rk* 
Figure 5. Two-dimensional example 

Submatrices Pi, P2 and F of (7) include the Maxwell 
coefficients, calculated as indicated by [1,2,3]. In the FDM 
region, a rectangular grid with equally spaced nodes of h = 
0.75 was placed, defining M = 15x31 = 465, N = 96 and W = 
72. It was also chosen K = V = 4 . 

Table 1 shows the maximum percentile deviation of the 
electric potentials calculated on öQi (vector <l>i), considered 
as a function of the relation between the number of simulated 
charges inside the FDM region (L) and the number of contour 
points on 5Qi (N). The values were obtained by comparison 
with results computed with L/N = 0.75 (this relation is 
assumed to give insignificant error for <t>i). As a result it may 
be suggested that L/N = 30% to 50% is a good choice. 

Figure 7 shows the electric potential distribution along 
the direction 1 of Figure 5, as a function of £2 and S3. It 
illustrates the effect of materials with different 
permittivities on the electric potential distribution. 

potential 

E2 E3 

1 1.0 1.0 

2 2.0 2.0 

3 2.0 5.0 

4 2.0 10.0 
distance 

Figure 7. Electric potential as a function of c 
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Additional comments: 

a) The charges simulated inside the FDM region must be 
located at least approximately 1.0 to 2.0 times the grid step 
(h) distant from 5Qi . Charges located very close to 3Qi lead 
to a severe loss of precision in the results (as also reported by 
[2]), due to the singularities of the expressions for the 
Maxwell coefficients. 
b) When a simulated charge is located very close to another, 
the matrix Q approximates of a rank deficient matrix (see 
[4,5]), which may cause some difficulties in the convergence 
of (14). This corresponds to the case of nearly singular 
matrices in the traditional CSM. 
c) It was considered an absolute error of 10"5 for the 
convergence of the CG, KS and CGS, and an error of 0.1% 
for the elements of the simulated charges vector q of (14) (22 
iterations was necessary). 
d) It is easy to see that all the mathematical approach exposed 
in this work applies to three-dimensional problems with axial 
symmetry as well (which in fact becomes reduced to a two- 
dimensional problem). This is feasible once the corresponding 
Maxwell coefficients for submatrices Pi, P2 and F (see 
[1,2,3]) and the corresponding discretization for the 
Laplacean operator of equation (4) (see [10]) are considered. 
Thus, problems like the electric potential distribution across 
an insulator chain, or across an insulating column of a high- 
voltage equipment can be solved. Three-dimensional 
problems without any symmetry are also possible in principle. 

8. CONCLUSION 

New developments on the combined application of the 
Carge Simulation method with the Finite Difference or Finite 
Element method were shown. 

The application of the Charge Simulation method as a 
least squares problem with the QR decomposition results in 
saving more than half of the original amount of computer 
memory, without loss of precision. 

The use of the CGS method with a tridiagonal 
preconditioning for the solution of the discretised problem 
results in a significant reduction of the CPU computer time, 
with the consequence of costs reduction and reduced error 
propagation in the computer. 

New procedures for the discretization of the boundary 
conditions were suggested, leading to results of higher 
precision. 

An iterative method for the solution of the combined 
problem was presented, by making use of the fixed point theory 

of linear systems, which allows convergence for a greater 
class of electrostatic problems. Another feature of this new 
iterative method is the non-dependence on the initial estimate 
for electric potentials. 

Finally, case studies show that the suggested innovations 
are effective in the mathematical formulation of the FDM & 
CSM or FEM & CSM, and they may represent a new 
motivation for the application of these hybrid methods on the 
computation of electric fields for unbounded problems. 
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APPENDIX I 

CGS algorithm with preconditioning 

Consider the CGS method with tridiagonal 
preconditioning for the solution of the system of linear 
equations A1 = b . For the application of the preconditioning 
technique, this system is modified as 

(LU)-'(Ai) = (LU)-'b 
where L,U = matrices resulting from the LU decomposition of 
the tridiagonal part of A [4,5]. 

In this case, the algorithm for the CGS is the following 
[7]: 

estimate  xo 
solve   (LU)  ro =  (b - A xo) 
<J0=  P.,=  O  ;  p_i=  1   ;   n=0 

10    if(rn   <  tolerance)  end 

pn      =   TO    rn   ;   ßn   =   pn/pn-l 
Un  =    rn   +   ßn  qn 
pn   =    Un   +   ßn   (qn   +   ßn   pn-l) 
solve      (LU)   Vn  =      (A pn) 

T 
<Tn   =    TO   Vn   ;   an   =   pn/Cn 
qn*1    =  Un    - an   Vn 
Vn  =   an   (Un  +  qn-H ) 
Xn»l    = Xn    +   Vn 
solve   (LU)  rnti  =  (b - A xn+i) ; n=n+l 
go to   10 
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APPENDIX n 

Discretization for n* V<I> 

A simple discretization for n-V<I>(Pi) is obtained using 
the Taylor series expansion, assuming existence of nodes 
arranged on a line with the same direction of n (Figure 8). 

h2 hi -» 
Pl-2 Pl-1 Pi 

Figure 8. Discretization for di/dn at Pi 

APPENDIX IV 

Proposed iterative method 

Suppose that qn of (14) is known. The CSM gives 

4i = Pi qn. (18) 

Thus, vector <&* can be calculated from the application 
of the CGS method to the FDM problem. Theoretically, from 
(13), 

Then 

(16) *(Pl-i) = *(Pi) - hi*'(Pi) + h!*"(Pi)/2 + 0(h3) 

*(Pi-2) = *(Pi)-(hi+h2)*'(Pi)+(hi+h2)2«"(Pi)/2+0(h3)      (17) 

Taking    (hi+h2)2-(16) - hi-(17), 

U'vWi) = *'(Pi) = a*(Pi)+ß*(Pi-i)+y*(Pi-2) + 0(h2) 

where a = 1/hi + l/(lu+h2) 
ß = -(1/hi + l/h2) 
y = l/h2 - l/(hi+h2) 
h = max <hi,h2> 

So the approximation n«7*(Pi)  = a*(Pi)+ß«(Pi-i)+r*(Pi-z) 
has an error ofCXh'). 

APPENDIX DI 

General discretization for n-VO 

A general discretization for n- VO(Pi) on 5Q is obtained, 
not requiring the existence of nodes arranged as those of 
Appendix II (Figure 9). 

Figure  9.  Discretization 
for di/dn  at Pi 

As  described by   [8] and 
according    to    Figure   9, 

discretization        for 
3*/3n      at      Pi      may   be 
written as 

= £    aj [*(Pi)-*(Pj)l 
J = i 

where Pi € Sß 
and Pj e Q 

The coefficients aj are determined using the geodesic 
normal coordinates, what results in the solution of the simple 
system of equations (see [8] for details) 

yi yz y3 

Xl(l+yi-K)        X2(l+V2-K) X3U+V3-K) 

2 
XI 

2 
yi 

2 2 
X2   -   y2 

2 
X3 

2 
y3 

ai" l" 

a2 = 0 

a3 0 

*   = A    U - Z2*i) (19) 

Determine the auxiliary vector fa , by using (19) 

/"    =    So*i + Zi*n (So - ZiA"lZ2)*i + ZiA_Iz       (20) 

A new vector of charges r° can be derived from the 
CSM with least squares and the QR decomposition, obtained 
from (13) 

P]'- [?]-[?■]-[-?] 
-l-T r *B! : Q l-/nJ 

Using (18) and (20) on the last expression, we obtain 

RV 
ZiA  Z2 - So 

Pi qn + R_1QT *B 

-ZiA"!z 
(21) 

where K is the curvature of dQ at Pi. 

Taking the combination q"4"1 = 9 qn + (1-Ö) r", where 9 
is an arbitrary parameter, and by using (21), the expression 
(15) for T is immediately obtained. This combination assures 
that at the end of the iterative calculations (when r" = qn ), 
we will have q*1-1 = qn = r°, for any chosen value of 9 . 

The flowchart of Figure 4 resumes the above procedure. 
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Abstract - In this work, we present a methodology for 
solving simultaneously the equations of magnetic fields 
and electric circuits of electrical machines. To consider 
the magnetic phenomena the Finite Element method is 
used. The machines are voltage fed and, thus, the electric 
circuit equations are present in the matricial system 
which takes into account both physical aspects. A time 
stepping technique is employed to simulate the steady and 
transient states. As result, we obtain the magnetic vector 
potential describing the magnetic behavior of the machine 
and the current established in the exciting coils. 

INTRODUCTION 

The modeling of electrical machines and their 
feeding circuits is related to two type of equations: the 
Poisson equation describing their magnetic behavior 
and the differential equations of the electrical circuits 
related to the exciting windings. 

It is also possible to determine the equivalent 
electrical circuit of the machine. By this procedure, it is 
necessary to obtain the parameters of the machine by 
analytical calculations or, for better accuracy, fields 
calculations. The equivalent electrical circuit, obtained 
by this procedure is associated to the electric feeding 
circuits [1],[2],[3]. This methodology presents 
limitations mainly when the machine has massive parts 
(not laminated regions), where eddy currents exist. In 
this case, it is practically impossible to determinate the 
equivalent electric circuit of the machine, for both, 
steady and transient states. 

To solve such problems, it is necessary to solve 
simultaneously the field and circuit equations 
[4],[5],[6],[7],[8],[9],[10]. 

In this work, we present a brief survey based in 
works performed by us and, after the presentation of the 
general equations and solving techniques, the proposed 
methodology is illustrated by permanent magnet and 
induction motors fed by different electric circuits. 

INVOLVED EQUATIONS 

The global equations to solve are obtained 
associating the equation which describes the magnetic 

structure   of   the   machine    with    the   equations 
representing the feeding circuits. 

Equations representing the magnetic structure of 
the machine 

The general case of an electrical machine containing 
magnetic materials of reluctivity v, permanent magnets 
with magnetization B0 and reluctivity vp and with 

conductive solid parts with electrical conductivity a is 
considered bellow. 

If a two dimensional representation of the machine 
structure is adopted and using the magnetic vector 
potential A, the equations describing the whole 
structure are: 

m   N T 
ä    S 

8\ aA~\ d \  M~\   v— +  v— 
äcl ck\ dy L #J 
= vi 

3Boy     <%ox 

l I  &X t ̂  J 
rr    nT    Tdl    Nl „ dA , 
U = RI + L —+—ffr. — ds 

dt    S "s a 

where: 
/ is the current in the machine windings, 
S is the winding surface, 
N is the number of turns in the winding, 
I is the machine depth, 
U is the voltage at the machine windings, 
L represents the end winding inductance, 
into   account   in   a   two    dimensional 
representation of the machine. 

(l.a) 

(l.b) 

not taken 
magnetic 

The analytical solution of equations (1) is not easy 
to accomplish due to the complex structure of electrical 
machines. Then we adopt the Finite Element method 
[11]. Equations (1) can then be written in the following 
matrix form: 

MA+N—A-PI = D 
dt 

Q—A+RI+L—I = U 
dt dt 

(2.a) 

(2.b) 
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Matrices M, N, P, D, Q are dependent on the machine 
magnetic structure (dimensions, reluctivity,etc). 

Electrical feeding circuits equations 

The differential equations representing the electric 
feeding circuits coupled to the machine windings can be 
written as: 

—X = H1X+H,E+H3I 
dt 1        2        3 

U = H4X+H5E+H6I 

(3.a) 

(3.b) 

where: 
X is the inductance current and capacitor voltage 
vector of the electrical circuit connected to the machine, 
Eis the vector of the voltage sources of the external 
circuit, 
matrices Hi,H2,H3, H4,H5,H6  are dependent on 
the electrical circuit topology. Equation (3.b) allows 
coupling between magnetic and electric equations. 

Global equations 

Combining equations (2) and (3), the global matrix 
system representing the whole electrical machine- 
feeding circuit is obtained and given by (4). The 
unknowns in this global system are [5]: 

a) the magnetic potential vector in the finite element 
mesh A, 
b) the currents in the machine windings I, 
c) the capacitor voltages and inductance currents in the 
feeding circuit (state variables). 

b) Matrix M terms are modified due to the rotor 
movement. 
c) If magnetic non-linearity must be taken into account 
an interactive procedure is used. In this work the 
Newton-Raphson method is employed [13]. 

The rotor movement is considered by remeshing the 
airgap at each position as follows. 

Movement modeling 

In this work, the movement is taken into account by 
a method based on meshing stator and rotor and 
connecting these meshes by an adaptable layer of Finite 
Elements placed in the air gap. This method is known 
as the Moving Band method. Its working principle is 
shown in Fig. 1 [4],[10]. 

MA+N—A-PI = D (4.a) 
dt 

Q—A+[R-H6]I+L—I-H4X = H5E        (4b) 
dt      L        6J       * 

—X-H1X-H3I = H2E (4.c) 

RESOLUTION METHOD 

Equations (4) above are solved step by step with 
respect to time. In this way, the time derivatives must 
be discretized (by means of the 6 -method or Euler's 
scheme [12]). During the step by step solution, the 
following must be observed: 

a) The matrix terms concerning the external circuit can 
be modified due to the topologic changes in the feeding 
circuit (commutation of the semiconductors, for 
example). 

Fig. 1: Moving Band method working principle. 

According to the airgap deformation, the Moving 
Band technique is based in a dynamic allocation of the 
periodic or anti-periodic boundary conditions. With this 
technique, in spite of the new nodes created with the 
rotation of the moving part, the number of unknowns is 
always the same. 

When using the Moving Band technique, if the 
rotation step is different than the discretization step, the 
finite elements placed in the airgap are deformed. This 
deformation can give rise to numerical oscillations on 
the voltages waveforms. To obtain better results, 
quadrilateral finite elements are used. These special 
elements are assembled in the global matrix as four 
triangular elements [10]. 

Torque calculation during the rotation 
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The choice of the method to simulate the rotor 
movement is related to the way employed to the torque 
calculation. This statement is based on studies made 
previously [10]. From this investigation, we concluded 
that the Maxwell Stress Tensor presents, with the 
Moving Band, very good accuracy. This method was 
chosen, but the following remark must be considered: if 
the displacement step is different of the discretization 
one (therefore, when there are deformations of the 
quadrilateral elements in the Moving Band), the torque 
is calculated in another layer of quadrilateral elements. 
This procedure is necessary to avoid numerical 
oscillations in the torque waveform. 

APPLICATION EXAMPLES 

We will present now two examples to describe the 
possibilities of the proposed method. These examples 
correspond to practical cases, which have been 
currently subjects of research. 

Single phase line started induction motor fed by a 
starting circuit. 

A two poles single phase induction motor used in 
electrical appliance applications is the first example. Its 
half structure as well as the calculated field distribution 
are shown in Fig.2 [14],[15]. In the same figure the 
induced current densities in the rotor bars at starting 
can be seen. The machine presents a different number 
of conductors by slot. Two windings are placed in the 
stator, namely the main and the auxiliary windings. A 
particular electric circuit shown in Fig. 3 is used to feed 
the machine. The resistance R(t) is time dependent. 

Fig. 2 : Single phase induction motor: field and induced current density 
distribution. 

Single phase induction motor 

Main winding 

/Sing! 

P     rF 

T 

Auxiliary 
Winding 

<-ia(t) 

v(t) 

Sinusoidal Voltage surce 

Fig. 3 : Single phase induction motor electrical feeding circuit 

Using electric circuits theory, matrices 
H1,H2,H3,H4, H5,H6,L and vector Eassociated 
to the electrical circuit of Fig. 3 can be obtained. Using 
Euler's scheme in order to represent the time 
derivatives in (4), one can write: 

H,= 
-R(t)C-At 
R(t)CAt 

H3 = 0 
1 
c 

H5 = 
1 
1 

R = 
rP 
0 

0 

(5.a) 

(5.c) 

H, =0 

H4 = 

(5.e)      H« = 

0 

-1 

0   0 

0   0 

E = v(t) 

(5.g) 

(5.i) 

L = 
lp   o 

0    L 

(5.b) 

(5.d) 

(5.f) 

(5.h) 

In equations (5) v(t) is the applied voltage, rp and 

ra are the main and auxiliary winding d.c. resistances. 
The main and auxiliary end winding inductances are 
represented respectively by  lp  and  la.  The  R(t) 

resistance and the capacitor C, already defined, are 
shown in Fig. 3. The time step is At. 

In the simulation procedure, at each time step after 
the solution of equations (4), the electromagnetic torque 
re is calculated with the Maxwell Stress Tensor. The 
angular speed a>m and the rotor displacement ß are 
determinate with the following equations: 

da>r 

dt      J 
= -[re-Tc-Bcom] (6.a) 
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dt 
= 0}, (6.b)       20 

where B is viscous damping factor, J is the inertia and 
rc is the load torque. 

Results: the simulation of the machine starting at 
no-load and fed by a 60 Hz sinusoidal voltage is 
presented in Figure 4. The resistance R(t) has a small 
value in the beginning of the operation and it is 
strongly increased after 0.3 seconds. The effects of the 
resistance change can be noticed in the figures. 

It is possible to remark the typical behavior of a 
single phase induction motor; the speed and current 
curves present particularly the oscillations having the 
double of the feeding frequency. In Figure 5 the 
calculated and experimental results at 670 rpm are 
presented. One can notice the good agreement between 
calculation and measurements. 
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Fig. 5 :Total (source) Ciin-ent i (t)+ia(t). (a) Calculated (5A/div.). 

(b) Experimental Results (5A/div.) 
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Fig. 4: Results of the starting of the single phase induction motor, 
(a) Total (source) Current ijt)+ia(t). (b) Speed 6>m(t). 

Permanent magnet motor fed by current inverter 

The motor under study is fed by the inverter 
presented in Figure 6, in which there are thyristors 
connected to a current source, which is obtained by a 
voltage source connected to an inductance having a 
large value. The inverter is operated by a position 
sensor placed on the rotor. 

To simulate such a device it is necessary to consider 
the actual structure of the electric circuit and its 
configuration changes due to the conducting states of 
the thyristors. Furthermore, the commutation of 
currents in the motor and the thyristor openings are 
made by the voltages in the motor terminals. Thus, the 
inverter operation and the machine are strongly 
associated and a simultaneous solution is the only 
procedure providing accurate results. In order to 
simplify the simulation, we take advantage of the fact 
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Fig. 6 : Current inverter working principle. 

that the operation sequences of the inverter are known 
in advance and they can be described by only two 
sequences: 

a) conduction, when two phases are fed and the third 
one is not connected. 
b) commutation, when the three phases are connected 
and the voltage between two phases is zero. 

These two states are successive and by circular 
permutation they describe the whole operation of the 
inverter. The electric circuits of these two sequences 
can be represent by the single circuit of Figure 7, where 
a resistance assuming values of 0 and 1 MQ represents 
the respectively the commutation and the conducting 
sequences. This procedure allows us to keep constant 
the matricial system order. 

^—JfiSKlftn^^    !!-► Permanent magnet 

Rext: 

Lext 

Motor 

This machine presents permanent magnets in the 
rotor. They are mechanically sustained by an aluminum 
hoop and interpolar wedges, where eddy currents can be 
induced. Fig. 9 presents the eddy currents distribution 
during the motor operation. 

Fig. 8 : Permanent magnet structure domain. 

Fig. 9 : Eddy currents distribution in the conducting parts. 

Fig. 7 : Circuit corresponding to the two working sequences. 

The beginning of the commutation sequence is 
determinate by the position of the rotor. The end of this 
state occurs when the current in the commutation loop 
becomes zero. The motor shown in Fig. 8 was chosen 
for this example. 

Figure 10 presents, using the same scales, the results 
obtained from the simulation and the experimental 
measurements. A very good agreement between these 
results is noticed. The eddy currents established in the 
aluminum hoop causes shorter commutation time, 
compared to the one expected for a device without 
induced currents. 
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Fig. 10 : Voltage and currents of the inverter. 

CONCLUSION 

In this work a general modeling describing the 
functioning of the whole structure composed by a 
machine and its feeding circuit was presented. This 
procedure is based in the coupling between the 
magnetic field and the electric circuit equations. 

When solving this system, the rotor movement was 
taken into account in the Finite Element geometric 
discretization of the domain. This technique is based on 
the concept of Moving Band using quadrilateral 
elements. The Maxwell Stress tensor is applied for 
torque calculation. 

Two different simulation cases were presented: a 
single phase line started induction motor and a 
permanent magnet motor fed by a current inverter. For 
both cases, the calculated and the experimental results 
present a very good agreement. 

Finally, when complex phenomena (eddy currents, 
non-linearity, movement and feeding by static 
converters) are present, the only method providing 
accurate results has to take into account simultaneously 
the different variables, as the one here proposed. 
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Abstract - This paper presents the mathematical 
formulation concerning the solution of inverse 
electromagnetic problems, i.e. the shape optimization of 
power frequency electromagnetic devices, based on a 
combination of numerical methods. The optimization 
problem is solved using deterministic methods in which 
the electromagnetic field problem is treated as a 
subproblem of the optimization process. The field 
problem is calculated using the finite element (FE) 
method. Three deterministic approaches are studied in 
detail, the quadratic extended penalty method (QUA), 
the augmented Lagrange multiplier (ALM) method and 
the constrained quasi-Newton method (PLBA-CR). The 
work highlights the advantages and drawbacks of each 
approach. The search direction for the optimization is 
found by two distinct methods, the direct differentiation 
of the FE matrices and the finite difference (FD) 
method. In total, three problems are discussed in order 
to show the power and applicability of the theory 
presented. The PLBA-CR, when combined with the 
direct differentiation of the FE matrices, appears to 
offer important advantages over the other methods. 

I. INTRODUCTION 

The design of electromagnetic devices, such as 
electromagnets, electrical machines etc., has always 
been a challenge for electrical engineers. This 
process normally involves the determination of the 
shapes, dimensions, position of the core, permanent 
magnets and windings of the device, amongst other 
factors, which may produce prescribed 
electromagnetic quantities such as flux distributions, 
forces and torques. 

In the past, such designs were a task based very 
much on the engineer's experience and intuition. After 
the advent of the computer in the fifties and its 
subsequent widespread use in the eighties, the whole 
process of design has changed. It is now possible to 
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j.ramirez@ic.ac.uk, by fax: +44(0)171-8238125, or by phone: 
+44(0)171-5946290. This work has been sponsored by Capes, 
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Council. 
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Universidade Federal de Minas Gerais 

Depto. de Engenharia Etetrica 
Av. do Contorno 842, 30110-060 BH, MG, Brazil 

analyse electromagnetic devices using computer aided 
design (CAD) techniques, see for instance [l]-[3]. 
However, a pure field analysis package may in many 
situations leave the engineer in an uncomfortable 
situation of having to change some key parameters 
in the design and then rerunning the program until an 
acceptable result is obtained. 

In recent years there has been an enormous amount 
of work concerning the solution of inverse 
electromagnetic problems by means of numerical 
methods, see for instance the proceedings of the last 
Compumags and CEFCs. In addition to the solution of 
particular problems there have been advancements 
towards the automatization of some specific tasks, the 
shape optimization of electromagnetic devices is one 
example. 

Mathematically, inverse problems such as the shape 
optimization of power frequency electromagnetic 
devices may be stated as a constrained optimization 
problem [4]. In general one may write 

Minimize 

Subject to 

gj({p},<p{{p}))<0   j = \,...,l 

hk({p}><?({p})) = 0   * = !»•..,« 

p\<Pi<pV    * = !,...,« 

(1) 

(2) 

(3) 

(4) 

where F represents the objective function, gj are the 

inequality constraints, hk are the equality constraints, 

pt stands for the design variables and 9 for the field 
variable. It has been assumed that the field variable 9 
is also a function of the design variable p. It is also 
important to note that the lower and upper limits 
given in (4) define the region of search in the n- 
dimensional space. 
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Classically (1) to (4) may be solved using either 
stochastic or deterministic methods. What 
differentiates these two sets is the way their numerical 
methods iterate. 

Stochastic methods are based on probabilistic rules, 
i.e. they attempt to achieve the solution by exhaustive 
evaluations of the objective function (1). This feature 
is often seen as an advantage of these methods since a 
global optimum may be achieved theoretically. 
However, in many cases that same feature is regarded 
as a major drawback since the computational cost 
may become prohibitive. Recently special attention 
has been paid to the method of simulated annealing 
and the method of genetic algorithms for solving 
inverse problems, see for instance [5]-[7]. 

Deterministic methods, on the other hand, are based 
on an iterative line search where the design 
parameters p are varied systematically until an 
optimum value is found. Mathematically this is 
expressed by 

The advantages and drawbacks of each approach are 
highlighted. Concerning the calculation of the search 
direction, the work describes in detail how (6) may be 
obtained by direct differentiation of the FE matrices 
for time-harmonic, magnetostatic and electrostatic 
systems. Finally three problems are solved in order to 
show the applicability of the theory. 

II. SENSITIVITY ANALYSIS 

We shall describe in this part a methodology to obtain 
quantitative information on how the performance of 
the device is affected by changes in the design 
variables pt. It is this information that provides the 
essential guideline for the search direction S given in 
(5). It will be assumed that the field analysis will be 
made using the FE method. Calculating the total 
derivative of (1) with respect to pt gives 

dF\ 

{p}<«-{p}'+a<S< (5) 

U44 
dpi 

OF   far [lap 
dpi +[S(pj    [dp. 

i = \,...,n 

(8) 
where a stands for the step size and S for the search 
direction which is calculated by 

{s}g=-VFg+^{s} q-\ 
(6) 

with 

The first term of (8), that is dF/dpt , may be found 
from F which is normally given. The second term of 

(8) involves the calculation of {Scp/3/?,- j which can 

be evaluated from the FE formulation. 

2 / 2 

ß? = v/r9    / VF9-1 (7)      Time Harmonic System 

Thus, it becomes clear that the calculation of S 
requires the total differentiation of F with respect to p 
which in turn requires the differentiation of (p with 
respect to p. Indeed, deterministic methods have the 
advantage of using the information from one iteration 
to move to another. In many cases this feature makes 
the solver converge rapidly to an acceptable solution. 
This can represent substantial savings in 
computational costs. However, due to their nature 
deterministic approaches suffer from the potential 
limitation of getting stuck in a local minimum. For 
some works concerning the use of deterministic 
methods to inverse problems in electromagnetics refer 
to [8]-[10]. 

The aim of this paper is to present the mathematical 
formulation for the solution of shape optimization of 
power frequency electromagnetic devices. This is 
achieved by combining deterministic methods, which 
are used for the optimization process, with the FE 
method, which is used for solving the field problem. 
Three deterministic approaches are investigated: the 
quadratic extended penalty method (QUA), the 
augmented Lagrange multiplier (ALM) method and 
the constrained quasi-Newton method (PLBA-CR). 

Two   dimensional   time   harmonic   problems   are 
governed by the following equation 

V-(vV^*)-q/a>i4* = -Je (9) 

where v is the magnetic reluctivity (linear), a is the 

conductivity, j = v-1, co is the frequency, Je is the 
source current (assumed to be flowing only in the 

axial direction) and A* is the complex vector 
potential (entirely oriented in the axial direction). It is 
important to note that in this case the field variable cp 

is A*. Equation (9) may be solved term by term using 
the finite element method together with the Galerkin's 
approach to yield 

= 0   / = !,...,« (10) 

where n is the number of nodes. The three terms Ky, 

Ty  and Rt  may be found in [2], [3]. Thus, the 
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derivative     ldA*/dpj\     may    be    obtained    by 

differentiating (10), that is 

where n is the number of nodes. The two terms K, v 

I 
7=1 

(Kij+qj(oTy) 
8Ä 

cp     j=\ cp dp i 
(ii) 

The right hand side of (11) may be obtained by 
considering the derivative of Ky, Ty and Rj with 

respect to p, that is 

5 * , 3vW« 
-KyA* = I,n v—2- 
dp   J J     e "e      dp 

dudv 

+£joWJv;- 
dG* 

dp 
dudv (12) 

3 TvAJ ^n^J^yA*) 
dp 

-Z\n-oj(>>NyAj 

dudv 

d\ce 

~dp~ 

8 Ki^lni-iN^) 
dp dp 

+llnNtJe 

dudv 

dudv 

(13) 

SG< 

dp 
dudv (14) 

and  Rj  are identical to those from the previous 

system. In this case the derivative ydAjdpj j may be 

obtained from (16), that is 

which can be calculated using (12) and (14). 

Likewise, after the calculation of IdA/dpj j, the 

expression for {dB/dpt} may be obtained using 

B=VxA. 

Electrostatic System 

Similar to the magnetostatic system two dimensional 
electrostatic problems are also described by the 
Poisson equation 

v2v = -£ (18) 

in which V represents the electric scalar potential (the 
state variable <p in this case), e the electric permittivity 
and p the charge density. In this case an axisymmetric 
system will be considered. Equation (18) can be 
solved using the FE method together with Galerkin's 
approach to yield 

in which Ge is the Jacobian of the element of 

reference and N is the trial function. After the 

calculation   of    \dA*/dpA,   the   expression   for 

IdB* /dpj \ may be obtained using B* =Vx/. 

Magnetostatic System 

Two dimensional magnetostatic systems are governed 
by the Poisson equation 

TKyVj-R^O   i = !,...,« (19) 
7=1 

in which n is the number of nodes. In this case the 
two terms Ky and Rj are slightly different to those 

from a system with Cartesian symmetry, see [3] for 

instance. The derivative {dV/dpt} may be achieved 

by differentiating (19), that is 

,3V.-      n 

7=1 7=1 

V2A = -iiJ (15) 

dRj 

dp 

K;i 

dp m (20) 

in which A represents the magnetic vector potential 
(the state variable cp in this case), (j. the magnetic 
permeability and Jthe current density (oriented in the 
axis direction). Similar to the previous system, 
equation (15) may be solved using the FE method 
together with the Galerkin's approach to yield 

ZKyAj-R^O   i = \,...,n (16) 
7=1 

The right hand side of (20) may be calculated by 
considering 

9 3vW« 
dudv 

+Z\nnr0sVNyVJ- 
dG' 

dp 
dudv (21) 

and 
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iRi=VQ<nr°i{NiPe) dudv 

+ZSnnr0NiPe 

BG' 

dp 
dudv (22) 

where r0 represents the mean value of the distances of 
the vertices of a generic element to the Oz axis. For a 
linear element  r0 =(q +r2 +r3)/3. The expression 

for {dE/dpj} can then be obtained using E = -VV. 
It is important to note that for the three systems 

described previously the global system of equations, 
i.e. equations (10), (16) and (19), and their derivative 
with respect to pt, i.e. equations (11), (17) and (20) 

respectively, are characterized by the matrix \Ky 1. 

Therefore, the application of an appropriate method 
for solving (10), (16) or (19) could represent a major 
saving in computational time. Indeed this is achieved 
if the Cholesky-decomposition is used as discussed by 
[9]. In this case the computational effort for the 
calculation of a single additional gradient vector 
{dy/dpi} is reduced to forward and backward 
substitutions using the already decomposed matrix 

\Kjj] from the corresponding global system. 

An alternative way to calculate J3cp/c|p,- ] would be 
to use the finite difference method rather than using 
the direct differentiation of the FE matrices. In 
general one may write 

3cp 

dpi 

^p + hje^-^p-hjej) 

2ht 
(23) 

where fy, ht > 0, is a small perturbation that is made 
in the global system of equations of the respective 
system. Indeed, equation (23) is much simpler and 
easier to implement into an existing FE code. 
However, there are two drawbacks associated in 
calculation of (23). The first is concerned with the 
introduction of round off errors. The second is related 
with the high number of field calculations required. A 
simple comparison to illustrate the latter will be made 
in the analysis of the results. 

III. NUMERICAL OPTIMIZATION METHODS 

We shall consider in this part the mathematical 
formulation of three deterministic methods which are 
capable of solving the general optimization problem 
posed by (1) to (4). The advantages and limitations of 
each approach will be highlighted. 

Deterministic methods may be divided into two 
sets: indirect and direct methods. Indirect approaches 
are also known as SUMT (sequential unconstrained 

minimization techniques). The concept of these 
techniques is to create a pseudo function *F using the 
original objective and constraint functions and then 
minimize this pseudo function as an unconstrained 
function. In general form one may write 

Minimize 

v({p},rp) = F({pU{{p})) + 'AiPWiP))) &> 

where rp is a penalty multiplier and P is an imposed 
penalty function whose form depends on the SUMT 
being employed. Normally, the penalty multiplier is 

updated according to rq = rq~ y. In this paper two 

SUMT are investigated, the quadratic extended 
penalty function method (QUA) and the augmented 
Lagrange multiplier method (ALM). In both cases the 
unconstrained function is minimized using the BFGS 
method [4]. 

Direct methods are those approaches that tackle the 
original objective and constraint functions directly 
rather than creating a pseudo function. In this work 
only the constrained quasi-Newton method PLBA-CR 
will be investigated. 

Quadratic Extended Penalty Function Method (QUA) 

The quadratic extended penalty function method 
(QUA) was proposed in 1976 by [11]. The pseudo 
function is defined everywhere and also has a 
continuous first and second derivative. This important 
feature allows the application of second order 
methods, if needed, for the unconstrained 
minimization of the pseudo function. The QUA 
method also provides a sequence of improving 
feasible designs. In theory, this approach tends to be 
numerically better conditioned when compared to its 
predecessors [4]. 

Mathematically the penalty function is defined by 

P{p)-I.gj{p) 
7=1 

(25) 

where 

m- 
SJ(P) 

SJ(P) 3M+3 

if g»<-s 

if £/(/>)>-£ 

(26) 

in which s is in this case the transition parameter 
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defined by  s = ~c{rpJ ;  1/3 < a < 1/2  and C is a 

constant. It is clear that due to its quadratic form the 
penalty function (26) may become highly nonlinear. 
This is often seen as the disadvantage of this 
approach. Highly nonlinear functions may converge 
slowly or not converge at all. In addition, it has also 
been noticed [4] that the QUA method is sensitive to 
the value of the penalty multiplier rp, a feature that 
may lead to overflow. This may be avoided by 
selecting a small r„, say 1 and a soft y, say 0.7. 

Augmented Lagrange Multiplier Method (ALM) 

The augmented Lagrange multiplier method (ALM) is 
an approach which incorporates the advantages of the 
penalty methods. In particular the ALM method 
includes information concerning the constraint 
functions in the process which updates the Lagrange 
multipliers. This feature enhances the efficiency and 
reliability of this approach. In fact, it has been argued 
by [12] that the use of SUMT which do not include 
Lagrange multipliers is obsolete as a practical 
optimization tool. 

In mathematical form the ALM method may be 
defined by a pseudo function expressed as 

l\pXrp) = F(p)+ I \kjVj +rpy
2j 

+ ^\^k+mhk{p) + rp[hk{p)]  \ (27) 
k=\ v. 

where 

yij = max s».-^ 2r„ 
(28) 

in which X stands for the Lagrange multipliers. The 
update formulas for the Lagrange multipliers are 

Xf=\«j+2rp\ max 

^qkli = ^i^ph{pq) k = i, m 

j = 1,/ (29) 

(30) 

In summary, the following important advantages 
can be highlighted concerning the ALM approach. 
First, the method is relatively insensitive to the values 
of rp. Second, it is not necessary to increase rp -» oo 
to get the optimum solution since the process of 
updating the Lagrange multipliers requires 
information concerning the constraint functions, a 
feature which speeds up the convergence process. 
Third,  in theory it is possible to obtain precise 

gj(p) ^ 0 and hk[p) = 0. Fourth, the starting point 

may be either feasible or infeasible. 

Constrained Quasi-Newton Method (PLBA-CR) 

In the PLBA-CR approach the search direction is 
found by solving a subproblem with quadratic 
objective and linear constraint. The objective function 
is augmented using Lagrange multipliers and an 
exterior penalty so that the resulting one dimensional 
search is unconstrained. In mathematical terms the 
subproblem to be solved, i.e. the search direction 
vector S, may be expressed by 

Minimize /: cT5+ 0.55THS (31) 

Subject to   AT5<b,NT5' = e,5<0 (32) 

where 

dF[p,y(p)]       dF[p,q>(p)] 

dpi dPi 
(33) 

A is an n x / matrix of the gradient of the inequality 
constraint {ay - dgj^p^jdpj ), N is an nxm matrix 

of the gradient of the equality constraint 
(nilc =dhk[p)/dpj), H is an nxn approximate 
Hessian matrix of the Lagrange function, 

bj = - [gj{p)] and ek = - [hk(p)]. 

The QP subproblem that gives constraint correction 
can be developed by neglecting the first term of (31) 
and subject to the same constraints as (32). The 
solution to this subproblem gives a direction with the 
shortest distance to the constraint boundary from 
infeasible point. The subproblem for the objective 
reduction algorithm can be defined by setting the 
right-hand side vector e in (32) to be zero. The step 
size (a) can be calculated with the required reduction 
in objective which is based on a fractional reduction 
(y)as cc = |y f|/|c-S| [4]. 

IV. RESULTS 

Magnetostatic Problem 

The problem consists in determining the optimum 
shape of the poles of an electromagnet in order to 
maintain the magnetic flux density B constant in its 
air gap. Half of the electromagnet is shown in Fig.2a. 
The 2D model used in the analysis is given in Fig.2b. 
The 2D domain is made up of three main regions 
defined by Q = Q.F + Qc + QA, where D.F, Qc and 
D.A represent the ferromagnetic, coil and air region, 
respectively.   Dirichlet   and   Neumann   boundary 
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conditions are imposed on T0 and on F{ respectively. 
The mesh used in the simulations consisting of 156 
nodes and 263 elements is illustrated in Fig.3a. A 
zoom in the pole face showing the moving nodes is 
given in Fig.3b. The data used in the simulations are 
given    as    follows:     u = 1000uo    in    QF    and 

J = 1000 A /cm2 inQc. 

Fig. 2. Electromagnet 

/ / / / / / )/> 
// 

/ / // '/ 
/ A i/ 

/ A /, </ 
/ / Y> '/ 

d 7\\ 

/ 1 V> i / 

AKI/-- ,s^ 

/ /1 >/ 

4 >/ 
/ // 

/\ 
(a) (b) 

Fig.3 FE mesh used in the simulations 

The aim of this problem is to find the optimum 
position of the moving nodes indicated in Fig.3b, the 
design variables pt, which set up a shape in the pole 
of the electromagnet that insure a given constant flux 
density Bj over D (which includes 9 elements, also 
indicated in Fig.3b). Mathematically the problem can 
be defined as 

Minimize        F = T.   B. -Bj 

Subject to 

8j{p> I7~A  \pj -pj) 

(34) 

<0  (35) 

0.012<^<0.017 m;  j = l,...,6       (36) 

This problem was also used to validate the sensitivity 
analysis. The comparison for the calculation of 
{dB/dp} using the differentiation of the FE matrices 
and the FD method for node 5 is given in Table I. 

Each  component  of the  gradient  vector   VF   is 
obtained as a summation of terms of the form 

dF      dF      dF ^Bc 

dpj     dpj    d\Bc\ dpj 
= 2|fic-2*rf| A

Bc\ 
dpj 

(37) 

The term  <^Bc\/dpj in (37) is calculated using the 

formulation presented in section II. 

TABLE I 

RESULTS CONCERNING THE CALCULATION OF {dB/dp] 

Node 5 {dB/dp} 
Element FE FD 

93 -3.1506 -3.1437 
134 -7.4744 -7.4641 
135 -5.0445 -5.0147 
136 -6.6736 -6.6680 
137 -5.1984 -5.1649 
138 -7.5811 -7.5815 
139 -7.2837 -7.2755 
140 -7.6979 -7.6616 
141 -8.2650 -8.2737 
142 -7.9274 -7.8926 

The final result for Bj = 0.35Tis given in Table II. 
The number of function evaluations corresponds to 
the number of field solutions required in which FE 
stands for the direct differentiation of the FE matrices 
and FD for the finite difference method. The final 
shape obtained for the pole of the electromagnet is 
shown in Fig.4. 

TABLE II 

FrNAL RESULT FOR B^ = 0.3 5T 

Element 
QUA 

n (T) 
ALM 

W (T) 
PLBA-CR 

W (T) 
134 0.3498 0.3510 0.3493 
135 0.3479 0.3472 0.3483 
136 0.3499 0.3492 0.3496 
137 0.3518 0.3505 0.3522 
138 0.3502 0.3501 0.3495 
139 0.3514 0.3501 0.3507 
140 0.3499 0.3507 0.3493 
141 0.3507 0.3503 0.3495 
142 0.3499 0.3509 0.3492 

No.of function 
evaluations (FE) 742 642 151 

No. of function 
evaluations (FD) 2474 2388 755 

D 

Air 

/ 

Core 

 Bd = 0.33 T 

- Bd = 0.35T 

Fig.4 - Final shape obtained using the PLBA-CR method 
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Electrostatic Problem 

The objective in this idealised problem is to reduce 
the E tangential at the top surface of an insulator to 
values lower than 16 KV/m (this is just an example). 
The two dimensional model investigated is given in 
Fig.5. The mesh used in the simulations consisting of 
261 nodes and 494 elements is given in Fig.6. The 
insulator is made of porcelain (sr = 7) and is 
surrounded by air. Neumann boundary condition was 
imposed on T^ The problem was reduced to find the 
optimum values of L\ and the three arcs defined by 
R\, Rj and R% and their respective angles, 
01,92 and 63. The initial values for these variables 
are        Rl = 4.0mm,        R2 = R% = 5.0mm        and 
e1=e2=e3 = 90. 

Fig.5 - Idealised insulator 

Fig.6 - Mesh used in the simulations 

The objective function in this case is given by 

in which n is the number of test points where E will 
be calculated. Four points were considered, one in the 
middle of L\ and the other three situated in the 
middle of the surface of the arcs 1,2 and 3. The design 
variables were subject to the following constraints 
3<p< \0mm for Ly; 3 < p < \0mm for Ry, R2 and 
R3;0<p<90 degrees for e1,92 and 63. The initial 
and final shape of the insulator for the target defined 
are given in Fig.7. Table III gives the information 
concerning the optimization process. 

final shape 

initial shape 

Fig.7 - Initial and final shape for the insulator 

TABLE III 
RESULTS CONCERNING THE ELECTROSTATIC PROBLEM 

Variables ALM PLBA-CR 

Lj (mm) 3.0 3.25 

R](mm) 8.25 8.0 

©^degrees) 61.94 64.12 

R2 (mm) 6.32 6.14 

6 2 (degrees) 53.10 55.10 

R3(mm) 7.62 7.48 

93 (degrees) 43.63 45.74 

No. of function 
evaluations (FE) 496 164 

Minimize F=-L\ECj-Ed.\ (38) 

Time Harmonic Problem 

The idealised problem considered here consisted in 
the determination of the optimum shape of a 
conducting cylinder of copper placed under the 
influence of a transverse time harmonic field. The 
objective is to obtain the magnetic flux density in the 
interior region of the cylinder at certain prescribed 
values, whilst keeping its area constant. The cylinder 
is assumed to be infinitely long in the z direction. One 
quarter of the 2D model is shown in Fig.8 (not to 
scale). The detail of the mesh used consisting of 264 
nodes and 472 elements is shown in Fig.9. 
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r = Neumann 

A = 0.1T 

r 100  mm 

■tig. 8 Infinite conducting cylinder 

Mathematically this problem may be expressed by 

Minimize I B: ■*4 
(39) 

which was subject to the following constraints, ±5% 
variation allowed in the area of the cylinder, 
13<p< 18/wTw and &<p<\2mm for the moving 
nodes of the outer and inner radius respectively. The 
objective function (39) was evaluated over all 
elements included in a 4mm2 centered on the origin, 

see Fig.9. The final shape achieved for B* <1.0T, 
/ = 50Hz is shown in Fig. 10. In this case the ALM 
method took 633 functions evaluations to converge 
whereas the PLBA-CR took 178. 

Fig.9 - Mesh used in the simulations 

, initial shape 

final shape 

Fig. 10 - Final shape for the conducting cylinder 

V. CONCLUSIONS 

This paper shows how the shape optimization of 
electromagnetic devices may be solved using 
deterministic methods combined with the FE 
approach. In particular it has been shown how to 
obtain the equations concerning the search direction 
S, which are essential for deterministic methods, for 
2D time harmonic systems by direct differentiation of 
the FE matrices. In addition it has also been indicated 
how to obtain the corresponding equations for 2D 
magnetostatic and electrostatic systems. It has been 
observed that the direct differentiation of the FE 
matrices requires less field calculations than the FD 
method. Three deterministic approaches were 
investigated. In particular, it has been noticed that the 
ALM method is in general more efficient and reliable 
than the QUA method. In terms of field calculations, 
it has been found that the PLBA-CR is the most 
efficient amongst the approaches studied. In general, 
it converged to an acceptable solution requiring five 
to ten time less computing CPU time than the QUA 
and ALM methods, see Tables II and III. The three 
problems solved indicate the power and applicability 
of the theory. Finally, the authors believe that the 
theory is of sufficient generality to be extended to 3D 
problems. 
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Abstract - This paper presents the causes of the 
acoustic noise magnetically generated by three-phase 
induction electric motors and some results of tests and 
calculation are discussed. The influence of the rotor 
slots skewing on the reduction of the magnetic noise is 
also analysed through calculated values. The paper 
gives a general view about how the magnetic noise in 
induction motors is generated and how much its 
prevision is important during the design stage. 

INTRODUCTION 

Basically, the rotating electric machines have 
three noise sources: 
a) due to the ventilating system; 
b) due to the bearings; 
c) magnetic origin. 

The segregation of the noise in these three 
categories permits the evaluation of each source 
individually. So, it is possible to determine the higher 
intensity source which must be reduced. 

The noise due to the ventilating system is 
particularly important in the 2 and 4 poles motors. In 
these motors it is the highest noise source. By the 
other hand, in the 6 and greater poles motors the main 
noise source is the electromagnetic circuit. There are 
two reasons for that: first, as the velocity of the fan 
decreases with the increase of the numbers of poles, 
the noise generated by it also decreases. Second, in 
opposition, if the number of poles is higher, the stator 
yoke height is smaller. So, as it is easier to deform a 
stator core with a thin yoke than with a thick one, the 
generated noise due to electromagnetic origins is 
higher. 

The noise due to the bearings is not significant in 
comparison with the other causes when the bearings 
have no failures. Otherwise, if the bearings are 
damaged, the noise can be increased very much. In 
such case, the solution is to change those bearings. 

Many researchers have investigated and written 
about magnetic noise in electric motors. Kako et alii 
[1] considered the magnetic noise only due to slot 
harmonics and they determined the noise emitted by a 
motor for a skewed and non-skewed rotor, but they did 

not mention how much the rotor was skewed. Brauer 
[2] described a digital computer program which 
predicts the total magnetic noise of induction motors. 
But, for pratical results, it is very important to make 
evident each cause of the magnetic noise in order to 
reduce the biggest one. This is the aim of this paper. 

The references were selected taking into account 
the objective of the paper. We suppose to be more 
appropriate to consider pioneer but still current works 
about the basics of this subject [3, 4, 5, 6, 7], 
including doctorate dissertation [6, 7] in order to 
clarify some aspects about the generation of the 
magnetic noise. Nevertheless, other avaliable recent 
books and papers were also analysed just to give us 
more information and knowledge about magnetic 
noise, but they were not used as reference. 

The originality of this paper is to present the 
causes of the magnetic noise separately for three-phase 
induction motors as well as the results calculated for 
24 different motors from 1 hp to 550 hp for 2,4,6 and 
8 poles. The influence of the rotor slots skewing is 
also analysed for several values of skewing. 

MAGNETIC NOISE GENERATION 

The noise of magnetic origin in electric machines 
is generated by the interaction of the induction waves 
(fundamental and harmonics) present in the airgap. 
These waves are variable in space and time and exist 
because of the winding distribution and variation of 
the airgap permeance due to the stator and rotor slots, 
saturation and eccentricity. These induction 
harmonics, combined themselves according to 
Maxwell's tensor expression, generate periodic force 
waves in the airgap deforming the stator core and 
exciting the surrounding air. This way, the acoustic 
noise is generated. The Fig. 1 shows this situation. 

The induction harmonic calculation as well as the 
determination method of magnetic noise were early 
presented by Jordan [3] in 1950. Nevertheless, the 
magnetic noise calculation requires thousands of 
combinations of the harmonics. Therefore, a reliable 
and fast determination of magnetic noise became 
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possible only after the computers appearance. 
It is not easy to determine accurately the magnetic 

noise. The accuracy of the results is reduced by the 
simplificative hypothesis which are necessary to 
eliminate some randomic influences of the motor 
manufacturing process. In fact, the magnetic noise 
determination is accurate in relation to the frequencies 
involved. Nevertheless, the results of the sound 
pressure level or sound power level do not have a good 
accuracy in all cases. In some cases they provide us 
only a good idea about the magnetic noise. 

gives the magnetic pressure P(x,t) [4,5,6]: 

mmf linear density 
a (x,t) = 2 \. sen (ux - co ^t - $ ^ 

airgap permeance 
A(x,t) = Ao + 2 Axcos (Kx-<Dxt-<)> ,) 

1 
airgap induction 

b (x,t) = 2 Bv. cos (vx - CDyt - ^v) 

1 
radial pressure waves 

Pr (x,t) =Pr . cos (rx- ort - 4>r) 

! 
stator deformation 

yr (x,t) = yr • cos (rx - CO rt - 4> r ) 

P{*,t) 
b(xrf 

2H0 
(1) 

Where u0 is the air permeability. 
The airgap induction b(x,t) is, actually, the sum of 

the fundamental induction wave with all harmonics 
due to winding distribution, stator and rotor slots, 
saturation and eccentricity [3]. Generally, b(x,t) is 
expressed by [4,5]: 

*(x,0-E   Bn cos  (vnx-o>n/-cpw) (2) 
R.1 

Where: 
Bn = amplitude of the induction harmonic 
vn = pair of poles of the induction harmonic 
x = space coordinate 
G>n= angular frequency of the induction harmonic 
<|>n = phase angle of the induction harmonic 
p = integer number as high as possible to 

consider the most of the induction harmonics. 

So, developing the equation (1), it results: 

sound pressure level 

Lr^0 log (9,05.107.fryr)+10 logPrd 

Fig. 1: Magnetic noise generation scheme 

P^-^-t ^Ucos(2vn,-2o>n/-29n)]+ 

,     P-1      P 

♦ j- E  E K Bm ■ 

In Fig.l, Prel is a correction in sound pressure 
level that considers the cylindrical surface of the motor 
and fr is the frequency of the force wave. 

•«* [(v» ±v
my -("»* <%)' -(»^»»)] (3) 

RADIAL FORCE WAVES 

On the stator surface in contact with the airgap, i. 
e., in the boundary between two regions with different 
permeabilities - in this case iron and air - radial forces 
act. Such forces are proportional to the squared airgap 
induction b(x,t). The Maxwell's tensor expression 

It can be noted that the magnetic pressure is 
formed by a constant term, a double frequency term 
and one third term where induction harmonic 
frequency and pair of poles are given by adding and 
subtracting each individual component. 

The waves of the induction harmonics are given 
according to [4] by: 
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A 

b(x,t) -|i^lA(x,0.52 —-■cos (vx-«v.f-fw)- 
v-i    v 

i    A A ^Ax 
2JI 

- TV E E -T-^ f^^fc   (4) 
2TCA0  V.I   x.\       2v      J 

Where f(x,t) is given by: 

/(X,0-[COS(V±A.)X-(O>V±O^)H9V
±

<PA.)]      (5) 

The permeance A(x,t) is given by a constant 
permeance of the airgap Ao(t) and a sum of periodic 
permeances due to slots, saturation and eccentricity 
genetically shown as follows: 

A(x,f)-A0(7)+E Ax.cos (Ax-w^.f-q^)    (6) 
A.-1 

and the mmf linear density a(x,t) is given by: 

aix,t) -Y,   Avsen(vx-u>vt-ifv) (7) 
v.l 

The equations to calculate the permeances and 
mmf linear density are not shown in this paper. They 
are easily found in the literature [4]. 

Solving the equation (4), the fundamental and 
the induction harmonics waves are determined. In this 
survey, each induction harmonic component is 
separated in groups according to its origin as follows : 

1. Fundamental induction wave. It is determined by 
multiplying the fundamental magnet-motive force 
(mmf) by the constant permeance of the airgap. 

2. Harmonics due to stator and rotor windings. 
These harmonics exist due to the variation of the mmf 
caused by the winding distribution combined with the 
constant permeance of the airgap. 

3. Harmonics due to stator and rotor slots. They 
occur due to the combination of stator and rotor slots 
permeance with the mmf. 

4. Harmonics due to the interaction between stator 
and rotor slots. They occur due to the mutual 
permeance between stator and rotor slots combined 
with the mmf. 

5. Fundamental saturation wave. It is determined 
from the fundamental mmf combined with the 
saturation permeance waves. 

6. Harmonics due to stator and rotor slots 
saturation. These harmonics are caused by the 
mutual permeance due to the saturation and stator and 
rotor slots combined with the mmf. 

7. Harmonics due to stator and rotor winding 
saturation. These harmonics are caused by the 
saturation mmf waves combined with the constant 
permeance of the airgap. 

8. Fundamental eccentricity wave. It is determined 
from the fundamental mmf combined with the 
eccentricity permeance waves. 

9. Harmonics due to stator and rotor slots 
eccentricity. These harmonics are caused by the 
mutual permeance due to the eccentricity and stator 
and rotor slots combined with the mmf. 

10. Harmonics due to stator and rotor winding 
eccentricity. These harmonics are caused by the 
eccentricity mmf waves combined with the constant 
permeance of the airgap. 

These induction harmonics, combined according 
to (1) give as result force density waves which 
deform the stator core periodically in time and space, 
generating the noise. Nevertheless, only few 
combinations can provide a high level of sound power 
[5]. In order to limit the number of possible 
combinations of the induction harmonics, it is enough 
to consider the following combinations: 

- stator harmonics with themselves 
r = Vj + v2 

*r = 2fv 

- stator harmonics with rotor harmonics 
r = A.±v 

(8) 
(9) 

(10) 
(11) 
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- Stator    harmonics    with    rotor    saturation 
harmonics 
r = ls±v (12) 

fr = 4s±fv (13) 
- stator    harmonics   with   rotor   eccentricity 

harmonics 
r = X6±v (14) 
fr=f^±fv (15) 

- rotor    harmonics with    stator    saturation 
harmonics 
r=vs±X (16) 

fr = fvs±fx (17) 
- rotor   harmonics   with   stator   eccentricity 

harmonics. 
r=vE±^ (18) 

(19) 
The parameters used to determine the 

vibration modes r and the noise frequencies fr are 
listed below for three phase squirrel cage induction 
motors: 
v = p(l+6gi) gl=0,±l,±2,±3,... 
^ = v + g2N2 g2=±l,±2,±3,... 
vs = 3p + gsN,        gs=0,±l,±2,±3,... 

^S = VS + §SN2 

v^pil+^N,     gg=0,±l,±2,±3,... 

(l-s)f 

fr = fve
±4 

V =v ■8B 
N2 

V =f 

k- =f+ *2 N7 

Si N* 
(l-s)f 

P 

for static eccentricity 

g N ± 1 
f^g = f + ——- (1-s) f    for dynamic eccentricity 

P 
Where: 
v/fv:   pairs of poles/frequency of stator harmonics 
TJfyi   pair of poles/frequency of rotor harmonics 
Vg/fy,.: pair of poles/frequency of stator saturation 

harmonics 
Xj/f^: pair of poles/frequency of rotor saturation 

harmonics 
Vg/fvs: pair of poles/frequency of stator eccentricity 

harmonics 
A-g/f^: pair of poles/frequency of rotor eccentricity 

harmonics 

Actually, the most important source of 
magnetic noise in induction motors is the combination 
of the stator induction harmonics with the rotor 
induction harmonics. Sometimes the fundamental 
induction wave combined with itself can also produce 
a high level of noise and vibration with double line 
frequency. 

NOISE DETERMINATION 

For each force wave generated by interaction of 
the induction harmonics, it is calculated the 
deformation yr on the stator surface, the vibration 
mode r, the excitation frequency of this force £ and 
the natural frequency of stator f„ for each vibration 
mode [3]. The expressions used to calculate the 
vibration mode r and the excitation frequency fr are 
given in the equations (8) to (19). The expressions for 
deformation Yr and natural stator frequency fs are 
well known from literature [4, 6]. The rotor 
deformation can be neglected, because it is very much 
easier to deform the stator than the rotor. 

After that, the sound pressure level in dB or dB(A) 
on the stator surface is determined, considering it as a 
vibrating free body. In the determination of magnetic 
noise are considered only the radial forces acting in the 
motor airgap. The proximity between natural 
frequencies and excitation frequency are considered 
through a ressonance factor [5] that can increase 
significantly the noise. In practice, it is not easy to find 
good results for this factor, because the algebric 
expressions do not take into account the influence of 
the frame. So, as suggestion, perhaps better results 
would be acquired through the use of an finite element 
method to determine the natural frequencies of the 
motor. 

Vibration Mode 

The vibration mode r, that results from the 
combination of the induction harmonic pole pairs is 
important until, at maximum, r=20 for large machines. 
Normally, it is enough to consider r=12. The natural 
frequency of the stator is determined for each vibration 
mode. The force waves deform the stator according to 
the vibration mode. Fig. 2 shows these deformations. 
For r = 0, the force has a uniform distribution along 
stator bore, varying in time. For r = 1, there is a 
rotating radial force over the stator or rotor. The stator 
deformations are not considered, only the rotor 
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bending. For r=2 or more there are rotating radial 
forces applied on 2r points of stator that deform it 
periodically in time and space. The most critical case 
for deformation and consequently noise generation is 
when r=2 because, in this case, the stator is eliptically 
deformed. This is the easiest way to deform it. 

r = 0 r = l 

r = 2 
r = 3 

Fig. 2: Vibration modes 

Results 

The results of the magnetic noise calculation on 
the stator surface are shown in the Table 1 for several 
motors on load from 1 hp (0.75 kW) to 550 hp (400 
kW) for 2, 4, 6 and 8 poles. These results were 
obtained using a software developed for FORTRAN 
77 (Microsoft FORTRAN Powerstation 32 bits) with 
the presentation of the results for WINDOWS. This 
software calculates and shows the noise separated by 
causes and it runs together with WEG's motor design 
and calculation softwares in order to give to our 
engineers a fast analysis tool. In the Table 1 are shown 
only the most significant values for each vibration 
mode and cause. There are three separated columns, 
according to the causes of the magnetic noise: 
winding/slots, saturation and eccentricity based on 
10%. For each column there are still two other 
columns indicating what combinations of flux density 
harmonics were considered according to equations (8) 
to (19). 

In order to condense the results presentation, the 
frequency and the vibration mode are shown only for 
the higher sound pressure level calculated. In the 
Table 1 the sound pressure level Lr is shown for 1 
meter far from the motor surface and it is given in 
dB(A). Nl is the number of stator slots and N2 is the 

number of rotor slots. The sound pressure levels below 
zero are not shown in the Table 1. 

Some values of sound pressure level are higher 
than those obtained from the tests. This indicates that 
it is important to consider the influence of the motor 
frame in the stator natural frequencies. In this 
simulation the influence of the motor frame was 
neglected. If the resonance factor is too high when 
only the stator dimensions are considered in the 
natural frequency determination, the simulation results 
are higher than those obtained from the tests. 
Otherwise, if the resonance factor is low, the 
calculation can indicate a low value and the tests can 
indicate a high one. 

INFLUENCE  OF  THE  ROTOR  SLOTS  SKEWING  ON  THE 
MAGNETIC NOISE 

Rotor slots skewing is a very useful way to reduce 
the rotor slot harmonics. As the rotor slots harmonics 
are an important cause in the generation of the 
magnetic noise, their reduction or elimination can 
decrease the magnetic noise as a whole. The magnetic 
noise for a 1 hp, 6 poles motor with rated load is 
shown in the fig. 3 in relation to rotor slots skewing. 
The rotor slots skewing is indicated in relation to the 
stator slot pitch. 

This graphic shows the dependence of the noise 
with respect to the rotor slots skewing. The curve 
shown can be significantly different from one motor to 
another. It is important to perceive, however, the great 
dependence of the noise with respect to the rotor slot 
skewing. 

801 
80- 

70 A 

... 

so I i/f 
MM  !  CX-J \ 

S>S\         Y^~"^ tr40 
J30- 

20 

0- i ;    ;    ;   ; 
095   1.0BS 1.000 1.115 1.140 1.164 1.180 1.214 1.230 

Skewing 

Fig. 3: Influency of the rotor slots skewing on the magnetic noise 
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CONCLUSION 

As expected, from the Table 1, the highest 
magnetic noise level occurred several times for the 
vibration mode equal 2. Actually, when the vibration 
mode r=2 exists, the highest magnetic noise occurs 
likely for this mode, except when there is a strong 
ressonance in a frequency related to other vibration 
mode. It can be noted that the influence of the 
saturation and eccentricity is very small for an usual 
design of a motor. In this simulation, the eccentricity 
was limited in 10% of the airgap lenght. 

According to the segregation of the magnetic noise 
causes it is possible to improve the performance of the 
electric motor. The calculation method provides very 
useful result to the magnetic noise evaluation of 
three-phase induction motors. The calculation of the 
force and deformation waves frequencies is accurate. 
If, through the calculation, the maximum noise occurs 
for a determined frequency, this situation certainly will 
happen during the test, but the measured value can be 
different in amplitude from the calculated value. 

In relation to rotor slots skewing, the Fig. 3 shows 
clearly the dependence of the magnetic noise with 
respect to the rotor slots skewing. It can be noted for 
that specific case a minimum point, indicating that 
small skewing variations can produce large variations 
in the noise. This condition is critical because it is very 
difficult to assure a good precision in the rotor slots 
skewing during manufacturing process. 

The determination of the magnetic origin sound 

noise is important during the motor design stage, 
when the characteristics of the motor can be changed 
with a relatively low cost. After the motor is 
assembled, there is nothing to do to reduce the noise 
level without a high cost. That is a reason for the 
electric motor manufacturers to use this calculation 
and analysis tool. 
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Abstract - In previous work [1,2] the author presents 
a methodology, based on finite elements method 
(FEM), to calculate the potential distribution 
influence on the grounding area. At that time the 
input of the solver admits as known the split of the 
system. The aim of this article is to demonstrate the 
advantages of finite element method (FEM) 
associated with power systems equations with 
lumped parameters to intrinsically obtain the 
distribution of fault current in several offered 
conductor ways and the potential distribution on the 
ground, simultaneously. To solve the complex 
equations system, the methodology adopted was that 
described by Mesquita [3]. 

INTRODUCTION 

This work describes a method to calculate the 
distribution of currents between ground and over head 
ground wires when a line ground fault occurs in a 
transmission line as well as the potential grades that 
had been developed in the earth. 

The method described on references [4], [6] is 
based on: 

- Calculation of lumped parameters and use of 
traditional network studies, with simplifications mainly 
on the representation of the ground resistance and then- 
mutual; 

- Analyses based on empirical graphics. 

This kind of phenomena on the last years 
started to be solved using FEM techniques [1], but even 
in this case this solution assumes known fault current 
distribution. 

Our proposal is to combine both FEM 
techniques on the ground and lumped parameters of the 
over ground network as well the mutual between line 

*Instituto de Estudos Avancados - IEAv/CTA 
Säo Jose dos Campos 

and ground cables in the same solution using a global 
complex matrix. 

The computation in the frequencies domain 
brings a new contribution to the study. 

The application of the Incomplete Cholesky 
Complex-Bi-Conjugate Gradients method (ICCBCG) 
was identified as the most appropriate, in the face of 
encouraging results obtained until the moment, as well 
as existing symmetry in the resultant matrix. 

In the developed methodology, the domain is 
subdivided in two parts: 

1. soil and buried elements; 
2. electric network, as shown on fig. 1. 

ground wire 

^m 
ine cable 

Fig. 1 - Schematic Model of the Study Domain 

The matrix that simulates the system will be 
the composition of the global matrix arising from, 
mathematics formulation for the FEM to the ground 
system, with the insertion of the network lumped 
parameters, resulting in a system of equation like: 

Ax = b (1) 

where A is the complex matrix, result of the global 
matrix composition of the FEM with insertion of 
lumped parameters of the fault current dispersal 
system, x is the potential of all domain nodes, and b it 
is the impress current vector. 
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This method helps to get more accuracy on 
results of potential distribution on soil minimising 
investment on ground grid. As by-product, the used 
methodology allows the study of transference potentials 
in metallic elements not directly linked up with the 
electric system, but which are situated in their influence 
area (problem domain) like: plumbing, metallic 
structures, armours, which have contact or which are 
buried in the soil, in the moment of incident of the line 
to ground fault. 

CONSTRUCTION OF THE COMPLEX MATRIX 

Following [4] we can simplify the network 
model, to the following fig. 2: 

'3Io 
Zg    - ground wire sdf 

intpe dance; Jzmg 
12 

Zg § Zmg-mutualimpedance 
between line and 
ground wars; 

G- sdf impedance between tower top and tower footing 
electrode;  

Fig. 2 - Impedance model of lumped parameters. 

The points A and B are examples of interface 
between model with lumped parameter and ground 
(FEM). 

If we change in the above model the Zmg 
impedance by current generator: 

Ig 
Zmg 

Zg 
(3Io) (2) 

the interconnection of two substations can be shown in 
fig. 3: 

the over ground wire will be treated as one dimension 
elements to be included in the main matrix as shown 
bellow: 

Zg_ 

Fig. 3- Interlink of two ground networks of substations. 

The construction of the Matrix is done 
including in the FEM matrix [G] the nodes introduced 
by the links with the lumped parameters. To do that the 
impedance of the interconnections between the tower 
top and the ground electrode, and the self impedance of 

L_^3_S 

Tower mteicannecrkxns series 
irapeda 

-p     q . m n 

p 1/Zg-l/Zg J r G -G 

1 -1/Zg  1/Zg 
G 

n . 

n -G G 

Elements of parallel 
impe dance. 

m 

G 

"G" 

n 

-G 

G 

1/Zg-lßg 

-lßg  1/Zg 

[G] aller lumped dements included. 

The tower connections with the over ground 
wires will be considered as resistive so the final matrix 
will be symmetric with complex elements. This 
algorithm is the inclusion of an element in an already 
built Y matrix [5]: 

SOLUTION METHODOLOGY 

As described by Mesquita when the matrix A 
is symmetric and complex, we can use Incomplete 
Choleski method before applying the CBCG, making 
the ICCBCG (Incomplete Choleski Complex Bi- 
Conjugate Gradients). These solutions introduce 
reductions compared to direct inversion of the matrix 
using usual technics with lumped parameters and 
network studies. 

EXAMPLE AND RESULTS 

In the first approach we will use the simplified 
example of figure 4, with DC current of 1500 A on 
point 2. 

13 

1» 1500 A 

/I 

/    4 

14 

y*• A 
"//    / V 1      / 

3 .'' 
5 
7 ■/ 

Fig. 4 - Example Scheme 
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0,3 a 
—INW 

0,03 Q< 

1500 A 

0,03 ß 

—AVvA- 

0,08334 O 

■*N 

0,08334 n    9 

Fig. 5 - Equivalent Model 

The solver had considered the elements 
between the points 2-13, 13-14, and 14-5 as lumped 
values, and the rest of domain had been simulated with 
FEM and ICCG (Incomplete Cholesky Conjugate 
Gradients) solution because with DC current, the 
matrix becomes real. The results are shown below: 

V! = 226.48 V V2 = 226.53 V 

V3 = 226.45 V V4 = 226.47 V 

V5 = 124.99 V V6 = 124.97 V 

V7 = 124.97 V V8 = 124.98 V 

v9 =0V v10 = ov 
Vn = 0V v12 = ov 

V13 = 218.07 V V14= 133.45 V 

For verification lets take an equivalent system 
where the FEM domain will be simulated by lumped 
parameters too. 

Considerations: 
- Distance between two points: lm 
- Soil Resistivity: rsoi0 = 1/12 Q.m 

- Resistances:      element between points 2-13: 0,03 Q. 
element between points 13-14: 0,3 D. 
element between points 14-5: 0,03 Q 

Then, 
Rsolo = p/s= 1/12*1 =0,08334 

The current is uniformly distributed in the 1-2-3-4 area. 
So, we have the solution of the equivalent 

model of figure 5: 

Traditional 
Method 

ICCBCG 

VI 226.5 V 226.48 V 
V5 125.0 V 124.99 V 
V9 0.0 V 0.0 V 

To the other result we will use the example of the fig 
6: 

70m          f 

20m 

'        ^\     \\\      \^y 

[/115m 

2Mm 

Fig. 6 - Example domain 

The ground rods located on the four corners of 
the mesh and of the towers (one rod per tower) are 6.0 
m long, the mesh is buried at 0 m level, and the soil is 
stratified in three layers as follows: 

0m -3m: 100 fi.m 
-3m -9m: 400 Q.m 
-9m -15m: 1300 Q.m 

Fig. 7 shows the equipotential lines due to a 
total ground fault (1= 40 A) imposed to the left-side 
mesh. 

Fig. 7 - Equipotential lines 

Fig. 8 shows the potential profile in the 
direction (A-A') as shown in fig. 6, and the fig. 9 shows 
the potential surface at 0m level. 

Potential x Distance 

Distance (m] 
Fig. 8 - Potential profile 
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Flg. 9 - Potential Surface 

First tests on ICCBCG using the example of 
fig. 4, changing the connection impedance to: 

- Impedances: element between points 2-13: 0,03 Q 
element between points 13-14: 0,3j Q 
element between points 14-5: 0,03 Q 

The results are: 

Vj = 236.47 + 28.25J V V2 = 236.52 + 28.27) V 

V3 = 236.44 + 28.25J V V4 = 236.46 + 28.25J V 

V5 = 124.98 - 0.02j V V6 = 124.96 - O.Olj V 

V7 = 124.96 - O.Olj V V8 = 124.97 + O.Olj V 

V9 = 0.0 +O.Oj V V10 = 0.0 + O.Oj V 

Vn = 0.0 + 0.0jV V12 = 0.0 + O.Oj V 

V13 = 231.66+ 38.44JV V14= 129.84 -10.19JV 

For verification, we use an equivalent model, 
using normal circuit technics and the results are: 

Traditional 
Method 

ICCBCG 

VI 236.50 + 28.27J V 236.47 + 28.25J V 
V5 125.0 + O.Oj V 124.98 - 0.02J V 
V9 0.0 + O.Oj V 0.0 + O.Oj V 

CONCLUSION 

The results show that the implementation of 
the global matrix gives results in an acceptable 
precision compared with direct methods of circuit 
calculation. This way of calculation doesn't come to 
substitute other methods, but to look more carefully the 
locations where problems are detected. 

The great advantage is to obtain the division of 
currents between over-ground-cable and soil 
intrinsically resulting a more easy iterative analyses to 
the elements on ground. 
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An Investigation of the Scattering of Surface 
Waves at Dielectric Slab Waveguide with Axial 

Discontinuity 
CRESO S. DA ROCHA 

Abstract— This paper introduces a technique for studying 
the radiation due to an abrupt axial discontinuity in the 
geometry of a planar dielectric waveguide (slab waveguide) 
when an even TM surface wave strikes the discontinuity. 
The mode matching technique is applied at the discontinu- 
ity giving rise to formally exact integral equations which 
are solved by the Method of Moments. 

I. INTRODUCTION 

ELECTROMAGNETIC scattering due to a discontinu- 
ity in the geometry of a surface waveguide has oc- 

cupied attention of several investigators in the past few 
decades [l]-[7]. These authors, in one way or another, 
make approximations that turn solution of the problem 
unavailable for large range of discontinuity. On the other 
hand, in all cases,, the back radiation is considered very 
small and neglected. In our work there is no restriction 
values for the discontinuity, but we can observe that the 
solution becomes unstable as the structure in the right 
side approaches the air, Fig. 1, (by making 62 = 0). 

In this paper a method for investigating the scattering 
of an incident surface wave at the axial discontinuity of a 
dielectric slab with a step in the geometry is introduced. 
In our approach we formulate the field equations in an 
exact way by using the mode matching technique of the 
tangential fields, represented by a complete set of eigen- 
functions that are solved by the Method of Moments. In 
the integral equations, both back and forward scattered 
radiation spectral densities are considered, initially with- 
out approximations. 

II. MODE MATCHING AT THE INTERFACE 

With reference to Fig. 1, consider a TM surface wave 
with even symmetry [Hy(x) = Hy(—x)] striking the dis- 
continuity at 2 = 0 from the left and giving rise to a 
transmitted and a reflected surface wave as well as scat- 
tered radiation. The single mode is guaranteed by taking 
the slab of thickness not larger than 26c in the region I, 
where bc is given by 26c = Ao/i/fr — 1 (dominant mode). 
At the discontinuity the boundary conditions cannot be 
satisfied by the surface waves alone; an additional field 

The author is with the Department of Electrical Engineering, Federal 
University of Parafba, P.O. Box 10053 - 58100 Campina Grande, PB - 
Brazil, e-mail: creso@dee.ufpb.br 

with radiation characteristics must be introduced, that is, 
the total field must be given as 

and 

V"l = ^incident + Ipreflected + Eradiated,   [z < 0] 

^2 = "^transmitted + Eradiated,   [* > 0] 

Region I 
Reflected Surf ace Wave« 
Incident Surface Wave- 

,x     . P(r,9) 
Region II  >Radiated Wave 

—»Transmitted Surface Wave 
x=bj 

6 

(a) The slab waveguide with abrupt step in the geometry 

Region I- 
Reflected Surface Wave*- 
Incident Surface Wave— 

c P(r.9) 
Region II >Radiated 

Transmitted Surfa 
x=bj 

(b) Equivalent Structure for even TMQ mode 

Figure 1: The Dielectric Slab with Axial Discontinuity. 

The radiation is accounted for by the continuous spec- 
trum of pseudo-surface waves. Because h(s), the wave 
number in the z-direction for the continuous spectrum, 
is a double-valued function of s, the wave number in the 
a;—direction, it is necessary to define its branches to unique- 
ly define the pseudo-mode solutions, that is 

h(s) = + y^jfeg-s2,     [0 < s < to] 

h(s) = -Jys2-H,   [to < s < oo] 

(1) 

(2) 
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Equation (1) corresponds to the spectrum of radiation 
modes (visible range) while equation (2) is for the evanes- 
cent modes (invisible range). 

Let the incident surface wave have amplitude I and the 
reflected and transmitted surface waves have amplitude 
R and T, respectively. Taking ip = Hy(x, z) for the TM0 

mode. Matching the total fields at z — 0 gives [8] 

^oo 

(/ + R)hyl + /    [51(«)/A(«)]Äyl(*)d« = 
Jo 

/•oo 

Thy2 + /    [B2(s)/h(s)]hy2(s)ds      (3) 
Jo 

/■oo 

(fci/erl)(J - R)hyl - /    (l/eri)Bi(8)hyi(s)ds = 
Jo 

/•OO 

(h2/er2)Thy2 + /    (l/er2)B2(s)hy2(s)ds     (4) 
Jo 

where hy and hy(s) are the transverse function for the 
discrete and continuous TM field, respectively. B\ and B2 

are the unknown spectral densities for the left and right 
region, respectively. In the expressions above, including 
the dielectric constant, the x—dependence is understood. 

III. TRANSFORMATION TO THE SPECTRAL DOMAIN 

In order to apply the Moment Method one must first 
eliminate the x—dependence, so that (3) and (4) will be 
in a form suitable for computation. To do so and to take 
advantage of the orthogonality properties, (3) is multi- 
plied by hyi(s)/€i(x) and by hyi/e\{x) separately and in- 
tegrated over x from 0 to oo [8]. Similarly (4) is multiplied 
by Ayi(s) and hy\ separately and integrated over x from 
0 to oo. 

Noting the orthogonality properties, the following set 
of equations is obtained: 

tj^-NUs) = TFl2(s) + J~ B2(s)Hn(s,s)ds/h(s) (5) 

/•OO 

- BiWNfts) = h2TGn(S) + /    B2(s)I12(s,s)ds  (6) 
Jo 

/•OO 

(I + R)N2 = TH12 + /    B2(s)G21{s)ds/h(s)      (7) 
Jo 

/•OO 

(I-R)h1N? = h2TI12+        B2(s)F21{s)ds     (8) 
./o 

where the integrals F12(s), G12(s), Hn(s,s), h2{s,s), 
F2i(s), G2i(s), H\2 and Ii2 and the normalization factors 
Ni and N\(s) are defined as follows, for i and j mutu- 
ally exclusive and equal to 1 or 2 according to the region 
considered (left or right region): 

yoo       j 
Hij{s7s)= —^-rhyi(s)hyj(s)di 

Jo    ei(z) 
,oo      l 

Jo      £i\x) 

JV2 = I [iü + sin(2g»fc0  ,  cos2($i&,-)' 

and 

2e,-0,- 

^oo = £[«?(«)+«*(«)] 

(10) 

(11) 

(12) 

(13) 

where t>s-(s) and Wi(s) are defined as follows ([8], Cap. 2): 

Vi(s) = cos[gi(s)bi] (14) 

Wi(s) = —^-sin[p,(s)6,] 
er.s 

(15) 

gi is the discrete wavenumber inside the guide and a,- is an 
attenuating factor outside the guide in x—direction. Note 
the gi and a,- are solutions of the characteristic equation 
system 

</.-tan(3i&j) = (*,-€„• 

ft
2 + a? = *§(£„■-1) 

gi(s) and s are related by ([8], Cap. 2) 

gf(s) -s2= *0
3(cri - 1) 

h2(s) = k2
0-s2 

The integrals G,j(s), Uj (s, s) and Iij follow from Fij(s), 
Hij(s, s) and Hij, respectively by replacing e,-(a:) by €j(x). 

The system of four equations (5-8) is a set of integral 
equations in R, T, Bi(s) and B2(s) that can be solved by 
a suitable numerical method. 

IV. MOMENT METHOD SOLUTION 

To put the system to be solved in an appropriate form 
for the Method of Moments, let the unknown spectral den- 
sity Bi(s) be represented by the following series, 

N 

Bi(«) = 5><,°/»(«),   * = 1,2 (16) 
n=l 

where fn{s) are pulse functions, chosen as testing func- 
tions, and defined as follows: 

/„(*) = P(*-*B)= j£ for \s - sn | < As/2 
for \s - sn | > As/2 

(17) 

f°°    1 
Fii&= /     T7Z\hyi(s)hyjdx 

Jo      ei\x) 
(9) 

where As is the width of the pulse functions and sn is the 
nth pulse function's midpoint: 

sn = (n- l/2)As 

As = k0/No 
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and 
K = sN + As/2 

where JV is a suitable number of points, usually larger 
than No, the last value of n in which /i(s„_i) is still real. 
K is a large number that replaces infinity in the integrals 
of (5-8). The optimal values of N and iV0 are dictated 
by the convergence of the solution. For n > NQ, h(sn) is 
pure imaginary, giving rise to the evanescent modes. 

By using the expansion (16) the equations (5-8) become, 

N 

where lmn, mmn, Ion, mon are defined as 

L=f     H12(s,sm)ds/h(s) (26) 

m„ 

rriQn 

Ylbi1)P(s-sn)/h(s) = 

n. =   /        Jl2(s, Sm)ds 

= f    G12(s)ds/h(s) 

On =   /        F2l(s)ds 
•>As„ 

(27) 

(28) 

(29) 

n = l 

TF12(s) + T #> f   P(s - sn)H12(s, s)ds/h(s)   (18) 
,7=1       Jo 

N 

-^6(,1)P(S--S„)JV1
2(5) = 

ThGnW + f^bW [   P(s-sn)I12(s,s)ds      (19) 
fT,       Jo n=l 

(I + R)N? = THl2 + f2bP /   P(s-sn)G21(s)ds/h(s) 
»=1 Jo 

(20) 

(I-R)N* =Th2I12+Y,bW (   P(s-sn)F21(s)ds (21) 
,7=1      Jo 

If one uses the point-matching method, a suitable inner 
product is denned as follows, 

where Asn = (s„ - |As, sn + |As). 
Because of the properties of the pulse functions the 

range of these integrals were changed to 'local' range where 
each integral is performed over each pulse alone, Fig. 2. 
The above integrals cannot be solved in closed form. An 
approximate procedure is to expand part of the integrand 
that does not contain a function of the type l/(s2 -f2) in 
a Taylor series about s = sn, the midpoint of the range of 
integration. It is sufficient to consider only two terms of 
the expansion because the range of integration is or can be 
made small. This approximation is valid only for points 
where h(s) does not vanish. Points very close to s = k0 

would give poor approximations. 

tP(s-s„) 

< w, 
rK 

„£(/„)>= /    6(s - sm)L(fn)ds 
Jo 

where wm, the weighting function, is given by wm = 
6(s- sm), L(fn) is a linear operator, and /„ is the un- 
known response to be determined. 

Thus, multiplying (21) by 6(s - s) and integrating over 
s from 0 to K gives 

N 

Sn-.5    Sn+.5      „     S-k0   
--w—i—■—i—a—r- 

Sn-1       Sn       Sn+l   SN   j *N„    =N-1 sN K 

Invisible Rang' ej 

&M(*m) = TF12{sm)h(sm) + h(sm) £ b^lmn   (22) 

N 

- b$Nf(sm) = TGl2(sm)h2 + J2 b^mmn       (23) 
71 = 1 

N 

(/ + R)N?h! = TH12hi + £ b{?hn (24) 
n=l 

N 

(I - R)Nlhx = Th2h2 + Y, b^mon (25) 

Visible Range- 

Figure 2: Pulse Function for N Points. 

V. POWER CONSIDERATIONS 

Power in the Surface Wave 
The power carried by the dominant mode surface wave 

(per unit length in the y-direction) for the upper half of 
the slab waveguide is 

i     r°° 
Ps = -Re        ExH*ydx 

£      Jo 
(30) 

where 'Re' means 'Real part of '.   For TM modes the 
surface wave H field is given by 

n = l 
Hy{x,z) = Ahy{x)e-jh±z (31) 
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where A is the mode amplitude.   The '±' suffix for the 
wave number h has the following meaning 

h+ = h     (forward wave) 

A_ = h  (reflected wave) 

Moreover from Maxwell Equations, 

E* = -rrl-tfv = —^Hy(x>z)       (32) ut(x) dz   *      we0e(a:)   * K    ' 

Putting (31) and (32) into (30) gives 

region, which, by symmetry can be deduced from that for 
the upper half region. 

The integral above - (37), cannot be evaluated in closed 
form. Fortunately, for radiation problems, the primary in- 
terest is with the far field and so one can apply asymptotic 
integration techniques such as the saddle-point method. It 
is convenient to make the following changes of variables, 

x-b = psm{9),       z = pcos{9) (39) 

s = &osin7,       h(s) — ko cos(7) (40) 

smce 

P.= 
2w£r 

iW    -±-Mx)\2dx (33) 
Jo    £(x) 

„2 _ J2.   ,   „2 p    = X    + Z 

Therefore the total power carried by the even TMo mode 
is 

P, = *iw v (34) 

where N is the discrete normalization factor given in (12), 
Zo = vWeo - 1207rfi. 

The Radiated Power 

The total power of the radiating field for the upper half 
region is defined as 

1   f°° 
(35) 

where P(9), the angular power density per unit width in 
the y—direction, is defined by 

P(9)d9 = Z0\Hy(p,9)\2,    b-oo] (36) 

where p is the distance to the far field observation point 
from the origin and 9 is the angle between the direction 
of and the z—axis, measured from the latter (Fig. 1). 

For TM pseudo-modes the pseudo-surface wave H field 
is given by 

Hy(x, *) = \J" ^V*.«) e-'"*±<»>* ds     (cf.(31)) 

(37) 
where B(s) is the unknown spectral density and hy(x,s), 
the transverse function for the continuous TM mode field 
is given by 

(41) 

kl = s2 + h2(s) (42) 

In terms of the new variables, (37) can be written, for 
(0 < 0 < TT) 

Hy (/?> 0) = ö /  B(k° sin 7' ±fc° cos ?) 
* Jc 

[w(Jbo sin 7) - jto(Jb0Bin7)] e***«'"0*'*') dj 
(43) 

where the upper and lower signs in the exponential term 
and in the function B stand for z > 0 and z < 0, respec- 
tively. C is the integral path for the saddle-point method 
of integration. 

For z > 0 (x/2 <0 <ir) the saddle point is 6 = 9 and 
for z < 0 (7T/2 < 9 < it) the saddle point is 9 = it — 9 
([9],p.l08,9). 

For very large k0p, that is, for points far from the dis- 
continuity, the following asymptotic expression is obtained 

Hy{P,~9) = 
2k0p 

B(ko sin 9, ±ko cos 9) 

[v(k0 sin9)-jw(k0 sin$)] e-i(
fc«"-»/4) (44) 

Thus the far field of (44) is a diverging cylindrical wave 
satisfying the radiation condition, with pattern given by 

Q(9) = B(9)[v(9)-jw(9)] 

In view of (44) one writes 

(45) 

Hy(p,9) 
2kap 

\B{9)\'[v\9) + w\9)} (46) 

hy(x, s) = [v(s) - jw(s)] e M*  b\    [x > b]        (38)     and consequently, with reference to (36), 

where v(s) and w{s) are given by (14) and (15), respec- 
tively. Notice that in writing (37) one considered only the 
outgoing term of the pseudo-mode solution because the 
incoming one makes no contribution in the upper half re- 
gion. It is possible to show that the incoming term leads 
to an expression for the radiated power in the lower half 

P(9) = -^-Q\B(9)\
2
N\9) 

where N2(9) is given by 

N2(9) = ^[v2(9) + w2(9)] 

(47) 

(48) 
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Substituting (47) into (35) gives 

P^^^-J^\B{9)\2N2{e)d9 

More explicitly, in terms of s 

Prad = §-o Jo°° \B(s)\2N2(s)ds/h(s) 

(49) 

(50) 

Notice that ds/h(s) = 9, due to the change of variable. 
The forward and backward radiation powers are in- 

cluded in (49) when 9 is properly replaced; thus when 
9 runs from 0 to 7r, e has two stationary values and conse- 
quently the integrand is split into two terms, correspond- 
ing to the forward and back scattered radiation each as- 
sociated with the same value of s. 

The power pattern is then 

Q{9) = \B(9)\2N2(9),    [Q<9<7r] (51) 

VI. NUMERICAL RESULTS AND DISCUSSION 

For numerical calculation purposes the incident power 
is set to unity. Consequently, the transmitted, reflected, 
and radiated powers are normalized with respect to the 
incident power. They are in the convenient forms given 
as follows : 

trans hiN? 

ref R2 

P^d = 

(52) 

(53) 

As 
h(sn) 

(54) 
The superscript upon bn and the subscript in the other 
variables refer to the medium on the left '1' and on the 
right '2'. 

The actual total power (incident plus scattered) for the 
slab waveguide is double the value obtained here because 
one is considering only half the slab. 

The backward and forward power patterns are written 
as functions of 9n and bn ' and b„   as 

Qi{0n) = \b^\2N2(9n),    [TT/2 < 9n < *] 

QWn) = \b(2)\2N2(9n),    [0<9n< TT/2] 

where 

On 
sin-^sn/ko), [0 < 0„ < TT/2] 

7T - sin_1(sn/^o),     [T/2 < 9n < TT] 

(55) 

(56) 

(57) 

Notice that, in principle, the total scattered power equals 
1 and that the following relation must hold 

"trans T -Tref T -Trad — 1 (58) 

The expression above is useful to indicate whether the 
calculations performed are or are not accurate. Of course 
this relation is not a sufficient condition for the solution 
of the problem. 

In the following subsection the solutions of the system of 
equations (22-25) are presented for several selected cases. 

Convergence 

Curves showing the variation of the transmitted, re- 
flected, and radiated power with changes of the slab thick- 
ness in the right region are shown in Fig. 3. These 
plots were obtained by varying 2&2/A0 from .001 to 0.40. 
The conservation of energy was verified in all cases with 
N = 48 points and iV"o = 24 points. These results show 
that there are no problems of convergence for changes 
in 621 even for very small values. It is worth remark- 
ing that the radiated energy is very small, unless large 
steps are considered (small values of 62)- For example, 
when 262/A0 = 0.001 almost all energy is radiated and 
the reflected energy is very small. 

Power Patterns 

The main concern here is the radiation characteristics 
due to the step in the geometry. Several cases were con- 
sidered in order to show these properties. Curves of Fig. 
4 and 5 show the pattern characterists for some particular 
cases. One can notice that the smaller the dimension of 
the slab at the right side the closer to 9 = 0° is the peak 
of the radiated field. The error with respect to the total 
power involved in the calculations above is less then 1% 
for all cases with N = 48 and N0 = 24. 

V. CONCLUSION 

The Moment Method applied throughout this work has 
been shown to be accurate, efficient, and the results are 
very convincing for many practical cases of axial discon- 
tinuities in dielectric waveguide structures. The formula- 
tion of the field equations are exact and straightforward. 
On the other hand one concludes that the truncated num- 
ber of equations N and the number of equations in the 
visible range No play a very important role in the conver- 
gence of the solution. For most specific cases the number 
of points in the invisible range need not be large. 

The technique applied in this work can also be used for 
the slab and rod (TM01) waveguide with ascending steps 
in the geometry. Steps in the dielectric medium are also 
possible and the formulation is slightly simpler. Mixed 
cases can also be treated with some increase in complexity 
of mathematical handling. 

The method has to be changed in the case of free-end 
structures (62 = 0) since one gets more equations than 
needed because T becomes zero (see set of equations (22- 
25)). That is the reason the system gets unstable as 62 
approaches the air. 
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Abstract— In this paper a family of field-based error 
estimators for Finite Element analysis of electrostatic and 
magnetostatic problems in plane and axisymmetric 
geometries is presented. For the error estimation in 
magnetostatics, each element is divided in three sub- 
elements using an edge element approach, whereas for 
electrostatic problems a subdivision using facet elements is 
used. The methods and the numerical techniques are 
described, comparisons with known solutions are 
performed, some examples of application in cases of 
practical interest are reported and the obtained results are 
briefly discussed. 

I. INTRODUCTION 

Techniques for error estimation in Finite Element 
solutions of field problems and for automatic mesh 
modification to guarantee a user-defined error level 
have been proposed for many years, in all areas of 
engineering analysis [1]. Today they are becoming more 
and more interesting, particularly in Electromagnetic 
Analysis, because of their strategic importance in 
allowing reliable Finite Element solutions without 
specific user skills, in turn essential for automation of 
design environment, device optimization and inverse 
problem applications, increasingly required in designing 
advanced electromagnetic devices [2]. Many techniques 
for the estimation of errors have been proposed, but it 
has also been shown that the efficiency of each 
technique is significantly dependent on the specific 
problem to be solved [3-6]. 

In this paper a family of error estimators, resulting 
among the most efficient for electrostatic and 
magnetostatic problems in the range developed and 
tested by the authors, is presented. All error estimators 
are developed for first order, triangular meshes, operate 
on a single element at a time, and are available both for 
plane and axisymmetric geometries. The estimators 
present some analogies with the "Local Error Problem" 
approach, developed by the authors, that has been found 
very efficient with respect to other approaches [5]. The 
error estimators have been developed casting the errors 
directly in terms of fields, the quantity of more direct 
physical interest, defining a "Local Field Error 
Problem" [7]. 

The distinctive feature of the family of error 
estimators presented in the paper is the representation of 
the field over the element, that is related to the type of 

potential, scalar or vector, used to derive the field. This 
ensures the ability to capture effectively the biggest 
error contribution, connected to the normal derivative of 
the potential from which the field is derived. The 
representation of the error variables is then in terms of 
"edge" or "facet" elements for solutions derived from 
vector or scalar potentials, respectively [8]. To ensure a 
practical representation of these variables, a "Whitney 
forms" description has been used [9]. 

The error estimators defined in this way have then 
been used to build up an adaptive meshing strategy, 
based on the subdivision of elements with high errors, 
usually termed "h refinement" [10,11]. All algorithms 
have been implemented in the two-dimensional Finite 
Element development environment CEDEF, also used 
for other error estimation and adaption procedures 
developed in the authors' group [12]. 

In the paper the structure of error estimators is 
described, the adaptive meshing strategy used is 
outlined, the validation of their performance in cases 
with known solutions is performed, and results of usage 
in cases of practical industrial interest are reported and 
briefly discussed. 

II   THE LOCAL FIELD ERROR APPROACH 

The "Local Field Error Problem" for the electrostatic 
and magnetostatic cases is derived from the proper 
subset of Maxwell equations, defining a governing set in 
terms of curl and divergence of the numerical error 
[6,7,13]. The estimation is based on the solution of a 
differential problem over each element using as "error 
sources" the jump in normal derivatives of potential 
along element edges. In a similar way, it is possible to 
derive a formulation defining again a local problem over 
each element; this will assume as unknowns the errors in 
the evaluation of field quantities, with "error sources" 
derived from the jumps in the normal derivatives of 
potential applying Ampere's and Gauss' laws. 

The development of an "a posteriori" error estimate 
based on a "Local Field Error" approach requires the 
definition of the error estimate unknown in term of 
fields, the use of Maxwell equations in differential form 
and the definition of a closed domain where Dirichlet- 
like boundary conditions are applied. This implies that 
the unknown vector entity is uniquely defined by 
Helmholtz's theorem. 
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A. Electrostatic Problems 
The evaluation of the estimate of numerical errors in 

FEM solutions of electrostatic problems can be carried 
out by defining an adjoint problem, in terms of errors in 
electric field evaluation, where the unknowns are the 
components of the error vector e , defined as difference 

between the "true" electric field Et and the computed 

one E , that is: 

e = E,-Er (1) 

The error equations are derived from the electrostatic 
subset of Maxwell  equations applied to the "true" 

electric  field   Et.  This  leads to the  set of vector 

equations in terms of the error e : 

VD = 8=>V(ee) = 5-V(e£c) 

Vx£ = 0=>Vxe = -Vxf 

(2) 

(3) 

where e is the permittivity of materials and 8 is the free 
charge density. The RHS term of (2) can be expressed 
in terms of a fictitious charge density 5f by applying 
Gauss' law as: 

VDC-S = v(e£c)-S = 8/ (4) 

The fictitious charge density 8f is the volume source 
of the problem in terms of error and must be derived 
from the numerical solution in terms of the electric 
potential V. 

B. Magnetostatic Problems 
For magnetostatic problems, the evaluation of the 

estimate of numerical errors in Finite Element solutions 
can be carried out defining an adjoint problem where 
the unknowns are the components of the error vector e , 
defined as the difference between the "true" magnetic 

induction Bt  and the computed one Bc, that is: 

e = B,-Bc (5) 

The governing equations of the error problem are 
derived from the magnetostatic subset of Maxwell 

equations applied to the "true" magnetic induction B,. 

This leads to the set of vector equations for the 
numerical vector error e : 

V S,=0=>V(e) = -V-(4) 

Vxff = .7=>Vx(ve) = J-Vx(vßc) 

(6) 

(7) 

where v is the reluctivity of materials and J is the 
applied current density. The RHS term of (7) can be 

expressed in terms of a fictitious current density Jf by 
applying Ampere's law as: 

Vxw-; = Vx K)-J= /, (8) 

Those fictitious current densities are the volume 
sources of the problem in terms of error and must be 
derived from the numerical solution in terms of 
magnetic vector potential. 

C. Solution Strategy 
Equations (2) plus (3) and (6) plus (7) define the sets 

of vector equations for the error problems over a generic 
open domain, in the electrostatic and magnetostatic 
cases, respectively. This general form could be applied, 
in principle, to the whole domain of a problem 
discretized and solved with FEM, defining an adjoint 
problem where the unknowns are the error vectors: this 
problem would be of the same size, in term of 
unknowns, as the original FEM solution. However, this 
solution is in general considered too expensive, since it 
requires at each iteration the solution of two problems 
roughly of the same size. The solution strategy generally 
used to overcome this problem is based on the definition 
of the error problem on "patches" of a limited number 
of elements, considering the FEM discretized domain as 
a set of subdomains in each of which, if appropriate 
boundary conditions are applied, equations (2) and (3) 
or (6) and (7) can be defined [1,3,4]. 

In order to cope better with complex geometries with 
many interfaces, very likely to be of interest in industrial 
electromagnetic design, the authors have always chosen 
to restrict the "patch" to a single element [5-7]. 

III. ERROR SOURCES 

As previously pointed out, the problem is restricted 
to the solution of a "local problem", over each element, 
consisting of a set of two equations: one in terms of 
"divergence" (eq. 2 or 6) and one in terms of "curl" (eq. 
3 or 7). In order to obtain a unique solution, the 
definition of appropriate boundary conditions on each 
element is required. As it is well known, the derivatives 
computed by a FEM solution in terms of scalar 
potential, or of vector potential with a single 
component, are continuous in the tangential component 
at each inter element boundary, and are discontinuous 
on the normal component at the same boundaries. This 
leads to the assumption that the information relevant to 
the numerical error associated with the discrete solution 
are contained in those discontinuities [3-7]. 

In the standard approach proposed in [3,4], the 
continuity of the tangential component of the derivatives 
of the potential leads to the assumption that the error in 
the node is by definition set to zero, implying that it can 
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be considered negligible with respect to the error along 
the sides of the element. Similarly, in the "Field Based" 
approach proposed by the authors it is assumed that the 
error related to one of the components of the field (the 
tangential component of electric field or the normal 
component of magnetic induction) is negligible with 
respect to the error related to the other component. The 
consequence is that one of the two equations (the "curl" 
equation (3) for the electric field and the "divergence" 
equation (6) for the magnetic field) can be assumed as 
identically satisfied and can then be neglected in the 
error problem. With this assumption, the sources for the 
error problem can be identified only for the 
"meaningful" component of the error (the normal 
component for the electric field and the tangential 
component for the magnetic field) and the governing set 
of equations is restricted to one equation only. 

On each element of the discretized domain the 
boundary conditions are given on the surface of the 
element in term of the jump of the normal derivatives of 
the potential at inter-element boundaries. The computed 
jump, expressed in terms of field, is split between the 
two neighbouring elements, i and j, for the electric and 
magnetic field, respectively, as: 

*.™=a).™(^-^)-" (9) 

(10) 

The weight factors cdQ) take into account the ratio 
between the absolute values of the field in the two 
adjoining elements. At exterior boundaries and 
interfaces, the conditions on the error are derived by the 
residual in the evaluation of the relevant condition with 
respect to the normal (electric field) or tangential 
(magnetic field) component of the field. 

The fictitious charge density Sf and current densitiy 
Jf defined by (4) and (8), assumed to be constant over 
each element, can be evaluated applying Gauss' law, or 
Ampere's law, respectively, to the exterior boundary 3A 
of each element A: 

^Dc-nds-j5dn = j8/dQ 
34 

(11) 

(12) 

iv. NUMERICAL SOLUTION 

The adjoint problem in terms of error, defined by (2) 
for the electrostatic problem or by (7) for the 
magnetostatic problem over each element of the 
discretized mesh, with boundary conditions like (9) or 
(10) and internal sources like (11) or (12), can be 

numerically solved by discretizing the domain (that is, 
each generic element) into three sub-elements, by 
adding a node at the centroid of the element. 

On each sub-element the unknown error (the normal 
component of the error in the evaluation of the electric 
field, or the tangential component of the error in the 
evaluation of magnetic field) is represented using a 
vector interpolation representation expressed using a 
"Whitney forms" description [8,9] in terms of the nodal 
basic interpolation functions of first order (N\, N2, N3). 

A. Electrostatic problem 
In electrostatic Finite Element solutions, the vector 

interpolation form for the definition of the error problem 
that has been found more suitable to represent the error 
in terms of electric field is the "Facet Element" 
interpolation. technique. This technique is particularly 
useful for this case since it represents very well 
quantities related to a flux [8], that is the normal 
component of fields, which is the one more directly 
linked to the error in this case, as previously outlined. 
The boundary conditions and the unknowns for the error 
problem over each element are shown in Fig. 1. 

The three normal components applied to the outer 
sides are the known jumps, given by (9), that are 
derived from the numerical solution, while the three 
normal component applied to the inner sides are the 
unknown values. 

Fig. 1: Discretized "local domain" for the error problem and error 
unknowns in the electrostatic case. 

The error vector on a single sub-element can be 
defined as: 

« = St1^*«*    where   W^N^XNJ-NJVXN;   (13) 

Using a weighted residual approach, the discretized 
equation is then derived by the integral relation: 

ja(v^)(eVe--5/)dQ = 0 (14) 

In this way, on each element a set of three equations 
is defined, having as three unknowns the normal 
components of the error vector in the three inner sides 
of the discretized "local domain", as described in Fig. 1. 
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B. Magnetostatic problem 
In the magnetic case, the vector interpolation form 

for the definition of the error problem that appears more 
suitable to represent the vector error in terms of 
magnetic induction is the "Edge Element" interpolation 
technique. 

This technique is particularly useful for this case 
since it represents very well quantities related to a 
circulation [8]. 

The boundary conditions and the unknowns for the 
numerical problem are shown in Fig. 2, where the three 
tangential components applied to the outer sides are the 
known jumps, given by (10), derived from the numerical 
solution, while the three tangential components applied 
to the inner sides are the unknown values. 

Fig. 2: Discretized "local domain" for the error problem and error 
unknowns in the magnetostatic case. 

The error vector on a single sub-element can be 
derived as: 

«=Zt^A    where   W^N^NJ-NJVN; (15) 

Using a weighted residual approach, the discretized 
equation is then described by the integral relation: 

Jn(vxwi)-(vVxe-7/)dn=o (16) 

defining on each element a system of three equations in 
three unknowns, the tangential components of the error 
vector, defined on the three inner sides of the discretized 
"local domain", as detailed in Fig. 2. 

V.   MESH REFINEMENT 

The use of the error estimates previously presented in 
an automatic procedure for mesh refinement requires the 
identification of an adaption strategy. After a series of 
initial tests, the authors have identified a procedure that 
has proven reliable and robust for electromagnetic 
analysis applications, also in the case of complex 
geometries of practical industrial interest [10,11]. 

As defined in a previous paper [11], the procedure is 
based on the definition of a refinement indicator to 
guide the subdivision of elements, of a convergence 
parameter  to   stop   the   iterative   process   of  mesh 

refinement and also provides a final estimate of the 
local relative error on each element of the final refined 
mesh. All quantities are computed on the basis of 
evaluation of quadratic norms over each element of 
local values. The quadratic norm of a scalar or vector 
quantity is defined as: 

The refinement indicator is defined as : 

(17) 

(18) 

WJ\ 
where the vector F is the electric field in electrostatic 
cases or the magnetic induction in magnetostatic 
problems. The refinement indicator is used to identify 
the elements to be subdivided. The convergence 
parameter and the final error estimator are defined by: 

-VK e,-=ir^ (19) 

The convergence indicator is used to terminate the 
iterative procedure, that is stopped when its value falls 
below a user defined value of "average desired error", in 
relative or percentual terms. The final error estimate is 
then evaluated with respect to the maximum field value 
F (electric or magnetic) computed over the domain. 
Mesh refinement is realized using the h-refinement 
procedure detailed in [11]. 

VI. IMPLEMENTATION AND TEST CASES 

The proposed method has been implemented in the 
two-dimensional Finite Element development 
environment CEDEF, in the interactive module 
developed for the comparison of adaptive meshing and 
error estimation techniques [12]. Each solution is 
obtained with first order triangular elements. 

In order to validate the approach and to evaluate the 
performance of the proposed method, a set of 
analytically known problems has been analysed. The 
comparisons between estimated errors and real ones 
have been realized using in both cases the formula given 
in (20), but substituting, for the real errors, the exact 
solution. 
All tests performed have indicated a good performance 
of the method, that has generally provided consistent 
meshes and a final error estimate close to the real error. 
To allow a direct evaluation of results, some of the 
comparisons performed are reported in the following 
subsections. 
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A . Dielectric cylinder in uniform field 
This model problem is particularly useful to test the 

performance of the method in the presence of an 
interface between two materials with different 
permittivity. An analytical solution for this problem is 
given in [14]. 

In Fig. 3 the initial and the refined meshes, with a 
convergence level set to 1%, are reported. The results 
obtained, in terms of error estimate and real error on the 
refined mesh, are plotted in Fig. 4 with reference to the 
behaviour of errors along a line at y=0 across the 
interface. 

As can be observed from Fig. 4, the procedure shows 
a good agreement with real errors, as also found in other 
test cases of similar type, not reported here for the sake 
of brevity. 

Fig. 3: Initial and refined meshes for the dielectric cylinder problem, 
showing only a detail of the mesh. 
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Fig. 4: Plot of the comparisons between true and estimated errors, for 
the Dielectric cylinder problems along a line at y=0 across the 

interface. 

B. Conductor Bar 
Another reference problem that has been used as a 

test is the evaluation of magnetic induction distribution 
generated by a conductor bar of infinite length in an 
ironless domain. The analytic solution is obtained by the 
integration of Biot-Savart's law [14]. The model for the 
numerical solution has been obtained using a Dirichlet 

boundary condition at a sufficient distance from the 
conductor, computed by means of analytical formulae. 
In Fig. 5 the initial and the refined mesh, with a 
convergence level set to 1% are shown. In Fig. 6 the 
behaviour of the real and estimated errors along a line 
on the symmetry axis (y=0) crossing the conductor is 
reported. 

Fig. 5: Initial and refined meshes for the "Conductor Bar" problem, 
showing only a detail of the mesh. 
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Fig. 6: Behaviour of the real and estimated errors along a line on the 
symmetry axis of the conductor bar problem. 

Vn.   ROTATIONAL SYMMETRY PROBLEMS 

Since the error problems are cast in terms of fields, 
the error estimates with the "Local Field Error Problem" 
approach can be also extended to rotational symmetry 
problems with a limited amount of conceptual changes 
with respect to the formulation presented above. 

This extension has been performed and validated in 
the CEDEF development environment previously 
mentioned, and has provided also for this type of 
geometries very good results. Some examples of this 
kind are given in the next section. 

Vni.   INDUSTRIAL DESIGN EXAMPLES 

The adaptive procedures realized on the basis of the 
"Local Field Error" formulation have been also used in 
real, industrial level test problems, to evaluate the 
robustness of the procedure for practical applications. 
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Fig. 7: Initial and final mesh for the evaluation of electrostatic fields 
in an SFö switchgear. 

Fig. 8: Initial and final mesh for the evaluation of magnetic induction 
in a permanent magnet loudspeaker. 

In Fig. 7 the initial and final meshes for the 
evaluation of electrostatic fields in the axial section of 
an axisymmetric SF6 switchgear, comprising high 
voltage electrodes and an insulating cone are given, 
while in Fig. 8 the initial and final meshes for the 
evaluation of magnetic fields in a permanent magnet 
loudspeaker are displayed. 

In both cases the initial and final meshes have been 
produced in complete automation by the procedure, with 
the user required to define the average accuracy level 
only, set to one percent for each solution, and the results 
have proven consistent with those obtained with other 
codes, run with fine meshes without using an adaptive 
technique. 

DC. CONCLUSIONS 

The family of error estimators and adaptive 
algorithms presented in this paper has proven very 
effective and reliable in the cases tested. They also 
covered geometries of interest in industrial design, and 
helped to obtain FEM solutions of practical electrostatic 
and magnetostatic problems without any effort in the 
definition of the mesh. The solution quality is under the 
control of users but independent of their skills. 

The algorithms devised appear rather robust and 
flexible and the authors are carrying on further activity 
to extend the coverage to other subclasses of 
electromagnetic analysis. 
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Finite element modelling schemes for the design and analysis of 
electrical machines 

D.Rodger, P.J.Leonard, H.C.Lai and N.Allen 
University of Bath, Bath Avon BA2 7AY, U.K. 

Abstract— Electrical machines are complex objects. 
We have found that a variety of numerical techniques 
are required in order to model them using finite ele- 
ments. We concentrate here on the different formula- 
tions which are useful in modelling such devices. Ex- 
amples of modelling some of these machines using the 
MEGA package are described. 

INTRODUCTION 

Many electrical machines and other electromagnetic de- 
vices can be difficult to model using finite elements. They 
can contain features such as magnetic nonlinearity, move- 
ment, geometric complexity and connection to an exter- 
nal circuit. Here we describe some features of a general 
purpose finite element package MEGA which allows some 
of the less pathological problems to be treated. First we 
review the formulations used in the finite element models. 

FINITE ELEMENT FORMULATIONS 

The non conducting and conducting regions are mod- 
elled using the magnetic scalar potential, ip, and the mag- 
netic vector potential, A, respectively. This approach 
leads to an economic description of the field problem. 

Non Conducting Regions 

Non conducting regions are modelled using magnetic 
scalar potentials, either the total scalar V ,defined as 
Hy = —W, or the reduced scalar <j>, defined as Hj = 
—V^ + Hs- Here HT is the total magnetic field intensity 
and Hs is the field defined as VxHs = 3s, where Js is 
the source current density. The basic method outlined in 
[1] has been extended to allow voltage forced conditions 
[2], and to produce cuts for solving multiply connected 
problems. Both scalars give rise to a Laplacian type equa- 
tion which has to be solved: 

V-jiVV = 0 (1) 

Conducting Regions Including the Minkowski Transforma- 
tion 

Fields in conductors can be modelled using A , the mag- 
netic vector potential, and V, the electric scalar potential. 

Using B = VxA and E = -^ - W + u x VxA, 
where u is the material velocity, we obtain: 

Vx-VxA 
' dt 

+ u x VxA- W 

V-<r 
8A 

dt 
ux VxA + W 0 

(2) 

(3) 

The term involving u x VxA in the above arises from the 
Minkowski transformation and is only valid if the mov- 
ing media cross section normal to the direction of motion 
is invariant. Where appropriate [3], it is economical to 
dispense with V from the above set of equations. If we 
substitute V — A • u in the above formulation we have: 

Vx-VxA 

(-^ - (u • V)A - (A • V)u - A x (Vxu) J (4) 

Now a solution of (4) involving only A is required. 
The uniqueness of A is fixed by using a penalty term 

to specify the divergence of A and forcing the normal 
component of A to be zero on the inside surface of con- 
ductors. The last two terms in (4) are non zero in the 
case of rotational velocity [4] but are zero in the case of 
translational velocity [5]. Equations (1) and (4) are solved 
using a Galerkin finite element scheme [6]. If nonlinear, 
the equations are solved using a Newton-Raphson scheme. 
This scheme can be very unstable if used directly. A mod- 
ified scheme which uses line searches has been found to be 
necessary in the general case [7]. The terms involving u 
in (4) lead to numerical instability. This is alleviated by 
using an upwinding scheme [8]. The scheme here allows 
for a conductor moving at a velocity u, and leads to an 
asymmetric global matrix which has to be solved. The 
non moving case is of course symmetric. 

Electrostatic Problems 

Electrostatics problems may sometimes be formulated 
in terms of the electric scalar potential V, so that 

E = -W (5) 
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Since 
V-D = p, 

we obtain the Laplacian in V: 

- V-eW = p 

(6) 

(7) 

Voltage is the source term: 

As usual this may be solved using a Galerkin technique 
and either 2D or 3D finite elements. After some manipu- 
lation, this results in, for a 3D system: 

ZviV-eWdfi- (N€^-AS= f NpdQ     (8) 

n n 

Note that this formulation results in an exact enforce- 
ment of the E x n continuous condition and that the D • n 
condition is weakly correct. 

COMBINING THE FIELD AND CIRCUIT EQUATIONS 

Electrical machines are almost always connected to a 
fixed voltage supply or an electrical circuit such as an 
inverter. Unfortunately many finite element packages only 
allow constant current sources. Often a finite element 
model is used to derive a simpler equivalent circuit which 
may be connected to the external circuit. 

In some situations it is not possible to use the finite 
element field model to derive an equivalent circuit. For 
example if the field equations are nonlinear then the equiv- 
alent circuit would have to be identified for all possible 
field states, which is not practical. It is possible in some 
circumstances to use a separate field and circuit model 
and iterate until the interface conditions are met. This 
may work if the field and circuit are loosely coupled but 
for the tightly coupled case a combined solution is at- 
tractive. Another advantage of the tightly coupled finite 
element/circuit model is that the user interface is easier 
to deal with, as the complexity of the situation is handled 
in the software. This means that as far as the designer is 
concerned, the computer model is conceptually very easy 
to visualise and hopefully very similar to just wiring up 
an experiment in the laboratory. 

The general problem is to combine the field equations 
in terms of potentials with circuit node equations. In 
our scheme we use various field formulations for 2D and 
3D. In the circuit problem we solve for nodal voltages 
using Kirchoff's current equations at each node. To couple 
the two models we must identify the voltage and current 
within the field equations. These can then be used directly 
in Kirch off's circuit equations. 

The field equations fall into two forms depending on the 
formulation, 

• Current is the source term: 

K    Q 
QT    R V (9) 

K   W 
WT     L 

Xfield 
I (10) 

EXAMPLE OF A 2D MOTOR 

Consider a 2D model with coils of a given turns density. 

• Each wound coil has a known current distribution 
(but unknown value Jc). 

• The turns density tdefines the distribution of current. 

• Then current density is 

*• — Icoil*' (11) 

• The voltage across the terminals is found by integrat- 
ing the back e.m.f. 

V = l ft-AdS 

The equations to be solved are, 

(12) 

1 8A 
-V-VAz + a-^-tIcoil    =   0 (13) 

8A 
at^dS-V    =    0 (14) 

After applying the usual Galerkin procedure we get a 
set of equations that can be expressed in matrix form, 

K    W 
WT     0 

A 
Ic 

0 
V 

K w 0 0 
WT 0 -1 1 

0 -1 0 0 
0 1 0 0 

/ M ( °\ 
/c 0 
vA IA 

\VB ) \IB ) 

= 0 (15) 

If this is connected to ports A and B, we have: 

= 0   (16) 

3D MODEL OF A CAR ALTERNATOR 

The car alternator can be difficult to model because of 
its complex shape. Figure 1 shows a 3D finite element 
model of a typical claw-pole type car alternator. It has 
12 rotor poles and 36 stator slots. It is difficult to model 
because the features of its rotor and stator are so different 
both circumferentially and axially that the finite element 
meshes at the interface between these objects will be to- 
tally incompatible. As a result, creating a sensible mesh 
in the air gap will be difficult. 
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To overcome this meshing difficulty, we create separate 
meshes for the stator and rotor and then bring them to- 
gether to touch in the middle of the air gap. The two 
meshes are then coupled together by linking their poten- 
tial variables on the interface using Lagrange multipliers. 
The main advantage of this approach is that the nodes of 
the two meshes do not need to be 'matched' on the inter- 
face. As a result, the individual meshes can be made to 
be as well-formed as possible. 

This method is used to solve the FE model shown in 
Fig. 1. Due to symmetry, only one-twelveth of the whole 
alternator is modelled. The resulting vector plot of B 
near the tip of one of the rotor pole is shown in Fig. 2. 

Fig. 1. A 3D view of a FE model of a car alternator 

Fig. 2. Field vectors near the rotor pole tip 

AN ELECTROSTATIC MICRO MACHINE 

Often electrostatic devices move or rotate and finite ele- 
ment solutions would be required at many positions. This 
may be achieved using Lagrange multipliers in much the 
same way as for magnetics formulations [9]. If a region is 

split up into two meshes which have some common inter- 
face which will allow relative movement, such as a cylin- 
der or a flat plane, equations such as (8) may be used 
in each mesh. These meshes would still be disconnected 
and the natural boundary condition would prevail on the 
common interface. The meshes can be joined using La- 
grange multipliers. The condition that V is continuous 
may be enforced at the common interface using Lagrange 
multipliers. The Lagrange multipliers may be identified 

dV 
with —— so that, as before, the D • n continuous condition 

on 
is weakly satisfied and the continuity of V and therefore 
E x n is correct in an average sense. The two meshes need 
not have the same mesh at the common interface, nor the 
same number of nodes. 

Figure 3 shows a small electrostatic machine, diameter 
15 x 10_5m. The torque versus position curve is of some 
interest to designers of such machines. The Lagrange slid- 
ing interface method is used to solve the problem with the 
rotor in 12 different positions, as shown in Fig. 4. This is 
achieved with very little user effort. 

/V«H 

Fig. 3. A micro machine 

PERIODIC BOUNDARY CONDITIONS 

Often symmetry may be used to reduce the size of a 
finite element model. This section deals with another type 
of feature, periodicity. This is a function of the shape of 
the device and the state of the fields within it. 

One of the earliest references to periodic boundary con- 
ditions may be found in [10], so the concept is well estab- 
lished. However, all of the published work up to now 
(as far as the authors know) deals with scalar variables. 
When solving 3D eddy current problems, vector variables 
are required, at least in conducting regions. These are 
slightly more complex and are described here. 

If periodic boundary conditions exist on some parts of a 
device, a relationship between some potentials on bound- 
aries is implied, of the following form: 
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Fig. 4. Torque versus rotor angle for a micro machine 

slavevariable = P * mastervariable (17) 

In this case the slave variables depend on the master 
variables. Only the master variables appear as degrees of 
freedom in the final set of equations. In the general case, 
for a vector variable at a periodic node, we can relate the 
slave variable to the master variable using a transforma- 
tion matrix and a periodic parameter. 

Ax 
■ 

Ay = P 
[Az J 

slave 

lyx      'i 

*zx      ', 

xy 

yy 

j— 

lyz 

zy h 

A~x 

(18) 

master 

Ipslave = P^master (19) 

The transformation matrix shown in (18) 'rotates' the 
slave vector so that the components of slave and master 
are aligned. This is more fully explained in [11]. The P 
in the above is the periodic parameter. 

In general, the information required for establishing the 
periodic constraints in a typical electrical machine model 
are the location of the axis of rotational symmetry, a de- 
fined master-slave boundary, and the degrees of mechan- 
ical (M) and electrical (E) rotation. In the case of time 
transient or magnetostatic problems (P) the periodic pa- 
rameter would normally be equal to cos E, where E would 
be 0 or 180 degrees. For linear time harmonic problems 
where complex numbers are used, P could be complex. 

If the axis of mechanical symmetry is, for example, the 
z-axis, the potentials at the slave nodes are related to 
those of the master nodes in the following way: 

Ax cosM — sinM 0 JrXx 

Ay = zosE sinM cosM 0 Ay 
Az J 

slave 0 0 1 [A, J 
master 

(20) 

A PERIODIC TEST PROBLEM 

The device to be modelled is a purpose built test rig, 
having the basic configuration of a switched reluctance 
machine. All iron parts are solid so that we have a 3D 
nonlinear eddy current problem. A full model of the test 
rig is shown in Fig. 5. A detailed description is presented 
in [7]. The purpose of the experiment is to use the finite 
element method to simulate the behaviour of the time- 
transient torque when a step voltage is applied to the 
system, and to validate these predicted results against 
measurement. 

FILE  i   T3PB6 I PP.OJ   t   PARALLEL 

FULL 3D HODEL  ■   (PL 1.5.0,-2) SV&A 

Ipslave = (cOsE)lp„ (21) 

Fig. 5. Full model of the test rig 

When using a full model of the test rig, which does not 
take advantage of the periodic boundary conditions, sat- 
isfactory correlation can be obtained between predicted 
and measured results. The discrepancy is less than 2% at 
a near-stabilized current. However, this problem is com- 
putationally expensive to solve, in both time and space. 
The file containing the results at each time step requires 
approximately 1.5 GBytes of disk space. In order to re- 
duce the computational demands, periodicity constraints 
are implemented in the finite element software package, 
MEGA, and a new model, half the size, is constructed. 

Only one half of the device width need be modelled for 
reason of symmetry. Further symmetry simplification is 
not possible because of the unaligned position of the rotor 
with respect to the stator pole. However a periodic model, 
shown in Fig. 6, can be constructed, containing only one 
of the coils and a periodic boundary. 

The rig is excited from a constant voltage supply. A 
step voltage of 23.14V is applied to the coils which have a 
total resistance of 3.09ß [7]. The coil currents are there- 
fore unknowns in the system and must be calculated. This 
is carried out using the techniques described in the first 
section. 
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Fig. 6. A view of the periodic model mesh 

Results 

A preliminary validation of the periodic model is carried 
out using a lmm-thick slice of the original model. The 
periodic and non periodic 3D slice models yield identical 
torque curves, as may be observed in Fig. 7. However, 
since the periodic model contains only half the number of 
nodes compared to the non periodic one, the answer file 
containing all the time-step results is also decreased by the 
same factor (35 MBytes vs 70MBytes). The solving time 
on a DEC ALPHA model 3000 workstation has reduced 
from 6 hours to 2.4 hours, a saving of approximately 60%. 

CONCLUSIONS 

Some of the techniques which can help in modelling 
electrical machines using finite elements have been pre- 
sented. The sliding interface technique allows a machine 
to rotate in a realistic manner, while connected to an ex- 
ternal circuit. The use of periodic boundary conditions 
can sometimes yield a more economic solution. Despite 
many recent developments around the world, electrical 
machines still present some difficult challenges for the 
modeller. 
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Fig. 7. Comparison of measured and calculated torque 

Full periodic and nonperiodic models were then con- 
structed. Both of these torque curves agree very well with 
each other, as is shown in Fig. 7. The agreement with 
experimental results is also quite good. At 0.16s, the last 
computed time shown on the curve, the full 3D model 
predictions agree with experimental results to within 3%. 
Results from the slice models, which are essentially 2D, 
are of course less accurate. Here the agreement with mea- 
surement is approximately 14% at 0.16s. 
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Abstract — In this paper, the three dimensional 
vector potential magnetostatic problem is solved using 
nodal and edge finite elements. The influence of the gauge 
condition A.w=0 in the characteristics of the edge- 
element generated matrix is analyzed. Three gauge 
conditions are studied: no gauge, the complete A.w=0 
gauge and the incomplete A.w=0 gauge condition. 

I. INTRODUCTION 

The 3D nodal finite-element magnetostatic 
formulations are usually based on scalar potentials. 
However, these formulations present some problems 
such as the cancellation errors in highly permeable 
regions and difficulties to treat multiply connected 
regions [4]. These problems do not appear when the 
magnetic vector potential is used. However, there are 
also some computational drawbacks in this case, due to 
the use of three unknowns per node and due to the 
necessity of imposing a gauge condition. 

A new kind of finite-element that is being 
nowadays used is the edge element [1]. This element is 
very interesting from the computational point of view. 
Its degrees of freedom are line integrals of the vector 
potential along the edges. These elements 
automatically impose the tangential continuity of the 
interpolated variable between elements and let the 
normal component free. These elements are also 
adequate to impose the gauge A.w=0, where w is an 
arbitrary vector field that does not possess closed lines. 

The main objective of this paper is to compare 
the use of the edge and nodal finite elements in the 
solution of 3D magnetic vector potential static 
problems. The number of unknowns, the number of 
non zero elements in the matrix and the number of 
ICCG iterations are analyzed. The influence of the 
gauge A.w=0, for edge elements is also analyzed. 

II. MATHEMATICAL FORMULATION 

The magnetic vector potential A, defined by 

B=VxAf 

satisfies the following differential equation: 

(1) 

V x (v V x A) = J 
(2) 

where B is the flux density,  v is the magnetic 
reluctivity and J is the current density vector. 

This problem is not completely defined yet. The 
interface conditions between regions of different 
material characteristics, the boundary and gauge 
conditions must be specified. The interface conditions 
are based on the tangential continuity of the magnetic 
field H and on the continuity of the normal component 
of the magnetic induction B on the interface between 
regions of different characteristics, that is: 

n x (v(VxA),) = n x (v(V x A)2) 

(VxÄ)1-n = (VxÄ)2-n 

Here n is a unit vector normal to the interface. 
The boundary conditions can be specified as: 

(3) 

vV x A x n = 0 

2xh = 0 

where        Hxn = 0 

■where        B-n = 0        (4) 

where n is a unit vector normal to the boundary. 
Using the Galerkin method and considering the 

interface and boundary conditions, the following weak 
form can be obtained [4]: 

JQ vVxÄ-VxWdn = ln W-JdQ.      VJF     (5) 

where W is a vector weighting function. 
Equation (2) associated with conditions (3) and 

(4) does not assure the uniqueness of the solution A. If 
Aj is one solution, other solutions can be generated 
adding an arbitrary gradient function, that is: 

B = Vx A1=Vx(22 +V<j)J = Vxi2 (6) 

A gauge condition must be imposed so that the 
magnetic vector potential is uniquely determined. The 
strategy to apply this gauge is different if we consider 
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nodal or edge elements. This is discussed in the 
following section: 

A. Nodal finite-elements 

The Coulomb gauge is imposed to guarantee the 
solution uniqueness, that is: 

V-2 = 0 (7) 

Now, the weak form becomes [4]: 

J v(VxÄ-VxW+V-ÄV-W)dQ = j   WJdQ.  (8) 

The magnetic vector potential is approximated 
by nodal finite elements, that is: 

NNOS 

2h= ^(Aj + A^j + A^Ni (9) 
i=l 

where NNOS is the number of nodes of the element, 
(A^, Ayi, Aa) are the components of A at the node i, 
and N; is the nodal shape function associated with the 
node i. 

B. Edge finite elements 

The magnetic vector potential is now 
approximated by vector shape functions, defined over 
the element edges, that is: 

NAR 

X4^ (10) 
i=l 

where NAR is the number of edges of the element. The 
Aj's are the line integrals of A along the edges and the 
W;'s are the vector shape functions. The line integral of 
Wj along the edge where it is defined is equal to one 
and along the other edges it is equal to zero[7]. 

As already mentioned, a gauge condition must 
be imposed to guarantee the solution uniqueness. The 
adopted gauge for edge elements is A-w = 0 where w is 
an arbitrary vector field without closed lines. In [2] it is 
proved that this gauge guarantees the solution 
uniqueness. 

If the finite element mesh is seen as a connected 
graph, there exists a very interesting way to apply this 
gauge. The discretized version of A-w = 0 is obtained 
choosing the direction w as an arbitrary tree of the 
mesh   graph   [2].   Then,   the   degrees   of freedom 

associated with the tree are zeroed and only the edges 
corresponding to the co-tree must be evaluated. 

As the tree is arbitrary, there are some cases 
where it can generate an ill conditioned matrix and this 
can result in a big number of ICCG iterations [5]. To 
avoid this problem, an incomplete gauge condition has 
been investigated. In this case, the edges that are 
zeroed form an incomplete tree, that is, a path 
connecting two arbitrary nodes cannot exist. In this 
work, the construction of this incomplete tree is based 
on the idea that the edges where A is significant should 
not be zeroed [3]. 

m. NUMERICAL RESULTS 

The problem shown in Fig. 1 has been solved to 
compare the two finite element types. The problem 
consists of a cube with relative permeability equal to 
1000. A magnetic induction of 1 T is applied in the z 
direction. Hexahedral elements are used to discretize 
the geometry. The solution of the generated matrix 
system is obtained by the ICCG method. The 
convergence criterion for the ICCG is reached when 
the Euclidean norm of the residual is less than 1E-7. 
The problem does not present an analytic solution. So, 
B is evaluated at the point x=y=z=10mm so that the 
calculated values can be compared with the values 
presented in [5]. 

Different meshes are used. The discretization 
characteristics are presented in Table I. Table II shows 
the results obtained using nodal elements. Tables III, 
IV and V show the results obtained with edge elements 
without using any gauge, using the A.w=0 gauge and 
the incomplete Aw=0 gauge, respectively. In this case, 
the incomplete gauge was applied zeroing all the edge 
unknowns in the z direction. 
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Fig. 1A magnetic cube in an uniform field 
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Table I. 
Discretization Characteristics 

Divisions Number of 
Elements 

Number of 
Nodes 

Number of 
Edges 

4x4x4 64 125 300 
6x6x6 216 343 882 
8x8x8 512 729 1944 

Table II 
Nodal Elements 

Divisions Matrix 
coeffic. 

Equations ICCG 
iterations 

B|T| 

4x4x4 3630 177 2 2.5860 
6x6x6 16224 615 3 2.6114 
8x8x8 43826 1477 3 2.6288 

Table m. 
Edge Elements without gauge 

Divisions Matrix 
coeffic. 

Equations ICCG 
iterations 

B|T| 

4x4x4 1680 156 8 2.6007 
6x6x6 7294 570 10 2.5912 
8x8x8 19356 1400 13 2.5963 

Table IV. 
Edge Elements with the A-w =0 gauge. 

Divisions Matrix 
coeffic. 

Equations ICCG 
iterations 

B|T| 

4x4x4 851 111 31 2.6009 
6x6x6 3475 395 80 2.6040 
8x8x8 8971 959 131 2.6116 

Table V. 
Edge elements with the incomplete A-w =0 gauge 

Divisions Matrix 
coeffic. 

Equations ICCG 
iterations 

B|T| 

4x4x4 892 120 10 2.6007 
6x6x6 3592 420 16 2.5914 
8x8x8 9204 1008 21 2.5964 

The results were obtained through an Object 
Oriented Program written in the C++ language [6] 
using a 486, 50 MHz, PC. 

When no gauge is applied, edge elements 
generate a matrix system with dimension 
approximately equal to the dimension of the nodal 
elements generated matrix. However, the first matrix is 
much more sparse. 

The nodal elements' system has a very fast 
ICCG convergence, as compared to the edge elements. 
It can be seen in Table HI that the formulation without 

gauge presents the lowest number of ICCG iterations 
for the edge element formulations. However, the 
number of equations and non zero elements is much 
bigger than the ones presented in Tables IV and V 
Comparing the data in Tables IV and V, it can be seen 
that the incomplete gauge formulation reduces 
significantly the number of ICCG iterations, as 
compared to the complete gauge formulation. It can 
also be seen that the number of unknowns and of non 
zero coefficients is only a little greater than in the 
complete gauge formulation. 

The number of ICCG iterations can be reduced 
if the "Shifted Incomplete Cholesky Factorization" [8] 
is used. In this method the standard Incomplete 
Cholesky Factorization is modified including a shift 
factor Y to scale the diagonal elements. The case of y=l 
corresponds to the Standard Incomplete Cholesky 
Factorization. The effectiveness of the preconditioning 
method changes with y. Fig. 2 shows the influence of 
this factor in the number of ICCG iterations for all the 
edge element formulations. 
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Shift Factor y 
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Fig. 2: Number of ICCG iterations as influenced by the 
Incomplete Cholesky Factorization Shift Factor 

It can be seen in Fig. 2 that for the no gauge and 
the Incomplete Gauge formulations the shift factor 
does not have a big influence on the ICCG 
convergence and the standard ICCG can be used. 
However, for the complete gauge formulation, we must 
use a shift factor greater than one. 

The flux density B is almost the same for the 
four different formulations and converges to the value 
presented in [5]. Fig. 3 confirms this, showing the 
values of B along the z direction evaluated with nodal 
and edge elements with the complete gauge. 
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Fig. 3: |B| in the z direction (x=y=0.01) 

IV. CONCLUSIONS 

In this paper we presented a comparison 
between nodal and edge finite elements for 3D vector 
potential magnetostatic formulations. From the results 
presented in the previous sections, the following 
conclusions can be obtained: 

• Nodal elements present better convergence for the 
ICCG method; 

• The edge elements matrix is more sparse than the 
matrix generated by the nodal elements matrix; 

• The application of the complete gauge condition 
reduces considerably the number of equations and 
the number of non-zero elements in the system 
matrix. However, it increases a lot the number of 
ICCG iterations; 

• The complete gauge formulation is very sensitive 
to the value of the shift factor in the Incomplete 
Cholesky Factorization. The standard factorization 
(y = 1) must be avoided in this case, because the 
number of ICCG iterations is very high; 

• The incomplete gauge seems to be the best of the 
edge element formulations if we consider the 
analyzed aspects of memory requirements and the 
number of ICCG iterations. However, it must be 
emphasized that this conclusion is limited to the 
simple structure treated in this paper. For more 
complicated structures additional work must be 
done to guarantee that this is still valid. 
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